
 1

Intelligent Assistance in
German Software Develop-
ment: A Survey

Jörg Rech, Eric Ras, and Björn Decker, Fraunhofer IESE

esearchers have studied and created a wide range of techniques to
support software engineers during development. This article re-
ports parts of the results of a survey of 135 participants that has
been conducted in Germany to shed light on the usage and de-

mand of intelligent assistance in software engineering activities. The survey
showed that there is a high demand and acceptance for unobtrusive, quickly
executable, and reactive assistance in core software engineering phases to
help solve the problems at hand. In addition, several challenges for the fu-
ture in software engineering work environments are pointed out.

While many environments are explicitly or
implicitly using ideas from intelligent assistance
research, the users are not always aware of its
existence and potential. The goals of this sur-
vey are to clarify the concepts for intelligent
assistance, describe the motivation for intelli-
gent assistance systems, review some examples
for intelligent assistance, and present the re-
sults of a survey about the attitude towards as
well as the demand for intelligent assistance in
German software organizations.
Assistance in SE

Intelligent assistance in software engineering
is a relatively old research field (see sidebar)
that is nevertheless of high interest for soft-
ware engineers today. Giving support to the

software engineers in programming, design,
requirements, or other software-related envi-
ronments is necessary, as the work product s
typically very complex, large, and influenced by
many persons.

The core objective of intelligent assistance is
to enable and optimize the:
• Automation of simple or repetitive software

development tasks such as compilation, test
case generation, code smell discovery, etc.

• Insight into the system under development
via cross-references, querying capabilities, or
visualization.

• Interaction with and negotiation between the
involved parties (e.g., the user(s) and / or
the assisting (sub-)systems) to support co-
operative work or to explain the assistance.

R

 2

 Examples of Assistance
Today, a multitude of assistance systems are

available that are more or less useful to a soft-
ware engineer. In the following, several note-
worthy systems are listed that are either
broadly known or perceived as useful.
• One of the most widely known systems is

probably the assistance in Microsoft’s office
programs (e.g., Clippy, Einstein, or Merlin)
(see http://www.microsoft.com/msagent/).
It assists users in working with the office
tool and explains functions or error mes-
sages. While it is typically seen as not very
helpful to experienced users, it might help
novice users without a decent handbook.

• In the eclipse IDE (and many similar IDEs)
many assistance systems were implemented,
including auto-compilation, wizards that
generate skeleton of common software sys-
tems (e.g., eclipse plugins), or features that
automatically apply refactorings to a selected
element. Furthermore, it offers code com-
pletion (i.e., it brings up a list of possible
methods of a class, as well as the appropri-
ate JavaDoc), the generation of small code
fragments (e.g., getter/setter methods), and
impact analysis on the code level (e.g., by
showing problems if the signature of a
method changes).

• Design critiquing systems such as argoUML
include tightly integrated intelligent assis-
tance that reports on design errors, incom-
pleteness of the design, or interface mis-
match. Furthermore, they are targeted to
suggest alternative designs (e.g., due to
problems in generating code from the de-
sign) or offer heuristic advice (e.g., a col-
league who reported a problem).

• Another example for assistance is the Mi-
crosoft .NET language environment for
“Spec#”. This programming system in-
cludes the Boogie static program verifier. It
assists the developer in formally specifying
the source code and checks for the correct-
ness in later change activities.
Of course, this is only a small subset of ex-

amples of existing assistance systems in con-
temporary tools used in software development.
Today, almost every tool integrates assistance
systems that are more or less “intelligent”.

Intelligent Assistance: Past, Present, and Future
The roots of Intelligent Assistance in software engineering can be found in

the early 1970s, when Terry Winograd wrote of intelligent assistance for pro-
grammers [1] and Teitelman described “The programmer’s assistant” [2]. They
set the stage for systems that should support developers with automated tasks –
some that are ubiquitous today (e.g., undo/redo functionality) and some that are
not (e.g., automated parameter checks). In the 1980s, environments such as
Marvel [3] and “The Programmer’s Apprentice” [4] for intelligent assistance
were developed, which modeled the development process, automatically proc-
essed the software in the background (e.g., compile and analysis tasks), and gave
additional assistance to the user if specific rules fired. The 1990s brought forth
systems for requirements engineering such as “The Requirement’s Apprentice”
[5] or software design such as the “Design Apprentice” [6], “The Software Ar-
chitect's Assistant“ [7], or argoUML and its design critiques [8]. They assisted in
tasks such as stepwise refinement, automated layout, consistency checking, or
code generation.

Today, assistance is widely used in IDEs such as eclipse, IntelliJ, or Visual
Studio .NET where information is offered regarding the compilation process
(e.g., warnings and errors), the correctness of a function (e.g., verification of
invariants in Spec# [9]), or by offering applicable refactorings. Other assistance
features include syntax-highlighting, context assistance (e.g., context-sensitive
help or code completion), wizards that generate running skeletons of applica-
tions, automated code inspections, or quick-fixes (i.e., small typical actions that
would solve a current problem), to name just a few.

In the future, we might see even more intelligent assistance in environments
for programming, maintenance, design, or requirements engineering that pro-
actively support tasks such as software reuse, learning on demand, or automated
product variant configuration, and bridge the gap between the phases of soft-
ware development. Model-driven architecture (MDA) represents a kind of “pro-
gramming assistance” that automatically translates models into source code –
wrapping the required expertise for programming and about software (i.e.,
source code) qualities within. Furthermore, quality oriented assistance that re-
works a system to emphasize a specific software quality such as maintainability
or performance (cf. ISO 9126) could reduce the cost and time for software and
system development.

References
1. Winograd, T. (1973). Breaking the complexity barrier again. Paper presented at the

Proceedings of the ACM SIGPLAN SIGIR Interface meeting on programming lan-
guages - information retrieval, 4-6 Nov. 1973, Gaithersburg, MD, USA.

2. Teitelman W. (1972). "Automated programmering - the programmer's assistant,"
Proceedings of the Fall Joint Computer Conference, AFIPS, 1972, page 915-921.

3. Kaiser, G. E., Feiler, P. H., & Popovich, S. S. (1988). “Intelligent assistance for
software development and maintenance.” Software, IEEE, 5(3), 40-49.

4. Rich, C., & Waters, R. C. (1988). The Programmer's Apprentice: a research over-
view. Computer, USA * vol 21 (Nov. 1988), no. 11, p. 10-25

5. Reubenstein, H. B., & Waters, R. C. (1991). The Requirements Apprentice: auto-
mated assistance for requirements acquisition. IEEE Transactions on Software En-
gineering, USA * vol 17 (March 1991), no 3, p 226-240

6. Waters, R. C., & Yang, M. T. (1991). Toward a Design Apprentice: supporting reuse
and evolution in software design. SIGSOFT Software Engineering Notes, USA * vol
16 (April 1991), no 2, p 33-44

7. Ng, K., Kramer, J., Magee, J., & Dulay, N. (1995). The Software Architect's Assis-
tant-a visual environment for distributed programming. Proceedings of the Twenty-
Eighth Hawaii International Conference on System Sciences, 1995.

8. Robbins J. E. (1999). Cognitive Support Features for Software Development Tools.
Ph.D. Thesis. University of California, Irvine

9. Barnett, M., Rustan, K., Leino, M., & Schulte, W. (2005). The Spec programming
system: an overview. International Workshop, CASSIS 2004. Marseille, France, 10-
14 March 2004 * Berlin, Germany: Springer Verlag, 2005, p 49-69

 3

Dimensions of Assistance
While the range of possible assistance sys-

tems is very large, the groups of assistance
systems can be distinguished by their informa-
tion offering and data extraction characteris-
tics.

The general data flow in an assistance sys-
tem is depicted in Figure 1. Information from
the content in work (the current document),
the process (i.e., the current activity), the tool
status, and information about the user is col-
lected and made available in a unified, ma-
chine-readable format. This data is used by the
core assistance algorithms to produce context-
specific information that is offered to the user.

Figure 1: Intelligent Assistance

Data Collection

Assistance Construction

Assistance Offer

User

User
Profile

Doc.
Profile Histories Process

Profile
Tool

Profile

Offering Assistance
The assistance provided to the user is based

upon the construction algorithm. While the
result of this algorithm is fixed, the method of
presentation can be differentiated by the fol-
lowing characteristics:
• When to assist: If every click by the user indi-

cates a potential action, the question arises
of when the user should be assisted. Assis-
tance can be generated pro-actively (i.e., be-
fore an action), during actions, or after ac-
tions, and presented on demand or on re-
quest.

• How to assist (media form): As modern com-
puters often represent multi-media work en-
vironments, the form of media used by the

assistance can be differentiated. Currently,
assistance can be presented textually, visually
(i.e., as a figure or animation), acoustically
(e.g., an audio comment), or as a video.

• Where to assist: The information offered by
the assistance system might be wrapped in
tooltips, pop-ups, tables, specific sound ef-
fects (e.g., beeps), blinking effects, sidebars
of a document, or specific marked spaces
(e.g., views in the eclipse IDE). Further-
more, it can be presented within the active
tool, a specific third-party tool, or in the op-
erating system itself.

• Why to assist: What is the rationale for the
assistance at all? There might exist a compe-
tence gap in the user’s profile, a complex
process step might be ahead, new tool fea-
tures were integrated during an update, or a
typically error-prone algorithm is currently
being developed.
While an assistance tool has at least a fixed

characteristic, it might also be possible that the
system decides on its own what, when, and
how the information should be presented to
the user. This decision might be influenced by
information about why and for whom assis-
tance was generated.

Assistance Construction
Assistance comes in all sizes and flavors –

from a simple tool explanation to an extended
e-learning offering. While the functionality or
result per se is hard to classify, the assistance
algorithms can be characterized as follows:
• Assistance for whom? Who should be assisted

with the constructed information? Depend-
ing on the user profile, the results need to be
personalized or adapted to the expertise
level.

• Assistance about what: What kind of object
should be enriched with assisting informa-
tion? Is it a requirements document, a test-
ing tool, a process or activity model, general
background knowledge, information about
experts, etc.?

• Assistance in which process? The process or
activity the user is currently involved in
might induce a special need for assistance.
For example, a programmer who is develop-
ing software (and is working on source
code) has other requirements for assistance

 4

than a tester or inspector who is looking at
the same source code.

• Assistance in which tool environment? If the in-
formation about the process is not available,
the tool environment context might be used
as well in order to optimize the assistance. A
running testing tool might be an indicator of
the current process; using a text editor (e.g.,
OpenOffice) for a requirements document
can imply missing knowledge or RE tools;
and an updated coding environment (e.g., a
new version of the eclipse IDE with several
new plugins) might hint at new functions
that are unknown to the user.

Data Collection for Assistance
Data from several sources has to be proc-

essed in the construction phase in order to
generate information to assist the user. The
characteristics that distinguish the approaches
are:
• Where to extract & preprocess data? Several

sources are available with information that
might be useful to construct information for
assistance. We can at least extract data from
user, document, process, and tool descrip-
tions that reside in the active tool (e.g., the
document content) or external databases
(e.g., LDAP server for user data).

• When to extract & preprocess data? The optimal
time for extraction depends on the type of
assistance and variability of the data. A user
profile will probably stay the same over the
course of a few hours, while a document
might change its content dramatically. The
data can be extracted continuously during

work, action-driven, or on demand. Fur-
thermore, depending on the currently active
assistance algorithms, the extraction might
even be suspended.

• How to extract & preprocess data? The data
from the different data sources has to be ex-
tracted and preprocessed. Extraction de-
pends on where the data resides and the
available interfaces or querying languages.
Preprocessing, similar to the ETL process in
data warehousing, offers several techniques
for the unification or discretization of data
to generate homogenous data for the next
phase. Furthermore, there is the question of
how does the system cope with missing, in-
complete, inconsistent, or incorrect data?
Some systems will ignore, correct, or filter
the existing data while others will blindly use
it.

The Survey
The survey about intelligent assistance in

software engineering was conducted because
of two reasons. First, it should elicit what prac-
titioners demand from their SE environment
and what kind of information they need and
prefer. Second, it was targeted to capture the
knowledge of practitioners about assistance as
well as their opinion about the different kinds
of assistance available today.

In order to elicit the current view of practi-
tioners, the survey was conducted with Ger-
man enterprises. A fairly recent study in the
German software industry [1] determined the
standard distribution of organizations in Ger-
many as shown in the “expected percentage”
column in Table 2. In comparison with this
study we got far more answers from larger
organizations (including Fortune Global 500
and multinational corporations) than from
micro organizations. Our respondents con-
sisted of a total of 460 individuals, of which
135 completely finalized the questionnaire –
including 89 companies, 18 freelancers, and 9
research organizations. The study was con-
ducted between 2 March and 9 April 2006.

The survey consisted of eight pages with a
total of 38 questions (including additional ex-
planatory information) that required an average
of 30 minutes to answer. A short German
summary [2] of the survey is available online at

Table 1
The size of the respondents organization

Organization Size Employees Percentage Expected
Percentage

Micro Organization
(1-9 employees) 36 26,7 % 77 %

Small Organization
(10-49 employees) 44 32,6 % 16 %

Medium Organization
(50-250 employees) 24 17,8 % 5 %

Large Organization
(250+ employees) 13 9,6 % 2 %

N/A 18 13,3 % –

 5

http://www.iese.fraunhofer.de, which also
includes additional questions and answers
about used products and processes.

The questionnaire was designed using mul-
tiple choice questions (mostly based on a five-
level Likert scale) wherever possible, as these
are more likely to be answered, and it is easy to
statistically analyze the answers. The two
common types of multiple choice questions
were “choose all that apply” and “choose the
best”. To allow unexpected answers, most
questions had an “Other” choice with some
extra space for one’s own comments. It was
discovered that this is especially useful when
the range of answers might be too long (e.g.,
tools for requirements engineering) or if there
is doubt whether the given answers are com-
plete. This made it possible to elicit some pre-
viously unknown facts via the survey.

To develop the survey pages and make them
available on the Internet, a commercial tool
called OPST from the company Globalpark
(http://www.globalpark.de/) was used. In
order to collect a large set of participants, a
commercial online company database by Hop-
penstedt (http://www.hoppenstedt.de/) was
used, which includes over 225,000 profiles of
German companies, banks, their branches, and
the major industrial associations in Germany.
Furthermore, the group of software developers
were addressed by subscribing to German
mailing lists designated to software develop-
ment and engineering activities. Bi-weekly
reminders to the lists were used to inform the
other subscribers about our survey.

Table 2 summarizes the respondent profile
of our survey. Most respondents identified
themselves as employees, followed by execu-
tive board members and project managers. The

respondent profile obtained met our prior
expectations, considering the basic user group
of assistance in software engineering tools.
Non-management employees and project man-
agers are the group that is supposed to have
the most contact with tools in this domain.

Findings
The following results are extracted from the

answers to twelve questions from the explor-
ative survey. We provide the main survey find-
ings in graphical format for brevity. The fol-
lowing descriptive statistics are grouped into
the three categories “Information Need”,
“Known Assistance Systems”, and “Demand
for Assistance”. Other topics from our survey
will be discussed elsewhere.

Information Need
The first question of the study was designed

to elicit what type of information a software
engineer needs that might be provided by an
assistance system. The question stated in Chart
1 “What kind of information is needed during work”,
provided several statements, and gave five
options for answering them (i.e., from very
often to never).

About 83% of the participants stated that
they often / very often require reusable docu-
ments (e.g., source code, requirements, test
cases, measurement plans, etc.) and 76% of the
participants answered that they often / very
often require templates or examples. However,
information in the form of courses and tutori-
als are only required often / very often by 15%
while 39% requires them rarely. This indicates
that there is a high demand for information
that is already available in companies or can
relatively easily be extracted from available
internal documents or the body of knowledge
in software engineering (e.g., templates such as
IEEE Standard 830).

Beside the required information, the survey
should elicit in which phases the participants
have the need for further information and,
therefore, asked “In which phase do you typically
need additional information?” Chart 2 shows that
the main phases where additional information
is needed are the core SE phases requirements
elicitation, design, and programming as well as
project management. In comparison, activities

Table 2
The number and percentages of the respondents

assuming each role
Respondents Role Number Percentage

Executive Board 28 20,74 %
Middle Management 11 8,15 %
Department Heads 17 12,59 %
Project Manager 21 15,56 %
Employee 36 26,67 %
Other 5 3,70 %
No answer 17 12,59 %

 6

such as measurement, versioning, and mainte-
nance are not considered as phases where addi-
tional information is needed.

This indicates that there is a high demand
for additional assistance systems in the core
phases where many tools are available. If we
compare the findings from other studies by
Lubars et al. [3], Emam et al. [4], Nikula et al.
[5], and Hofman & Lehner [6] this indicates
that assistance is needed in phases were no or
only very general tools such as office suites or
web sites exists. The other phases that are
either rarely used in SMEs (e.g., measurement)
or are not very complex (e.g., versioning) do
not represent fertile grounds for assistance.
This is partially affirmed in the findings of the
study by Koru & Tian [7] that found that “De-
velopers and testers record defects fairly con-
sistently and keep fairly complete defect re-
cords” and therefore assistance seems not
required.

Since intelligent assistance should provide
support for obtaining relevant information, the
rationales of why information is searched and
used (i.e., the retrieval rationales) give further
input for determining the requirements for
assistance. The retrieval rationales were deter-
mined using the question “Why are you gathering
information?”. As depicted in Chart 3, the main
rationales for gathering information are solving
concrete problems, closing knowledge gaps,
and personal motivation. Therefore, intelligent
assistance should focus on the current de-
mands and address current problems and
knowledge gaps for the retrieval of informa-
tion.

In order to provide the appropriate way of
assistance, it needs to be determined which
kind of information and which way of present-

ing information provides a high personal bene-
fit for the user. Most demands implied by the
retrieval rationales can be satisfied within a
short period of time and focus on a concrete
solution. This allows evaluating with reason-
able effort whether a certain assistance was
successful.

This short-term perspective on assistance
concerning concrete topics can also be found
in the retrieval rationales for learning (Chart 4)
based on the question “Which learning-specific
aspects should be improved by assistance?”. It shows
that 82% of the participants agreed that solv-
ing a concrete problem is important. The other
aspects were rated comparably low. Therefore,
it would improve user acceptance if long-term
competence development could be tightly
integrated within a series of concrete problem
solutions.

In summary, the following trends concern-
ing information needs for intelligent assistance
can be identified: a) solving concrete problems
quickly is the area with the highest information
needs, b) assistance is requested for core soft-
ware engineering processes, and c) intelligent
assistance can rely to some degree on the cor-
rectness of information existing within the
organization.

Known Assistance Systems
This second section investigates which kinds

of intelligent assistance are known by the par-
ticipants and how they are used. These investi-
gations can support the development of intelli-
gent assistance in general by indicating which
type and propagation of intelligent assistance is
accepted by users.

 7

Diagrams 1

Chart 1: Required Information Chart 3: Retrieval Rationales

Chart 2: Phases Chart Chart 4: Retrieval Rationales 2

Chart 6: Known Examples Chart 7: Forms of Assistance

Information Need at Work

83%

76%

53%

48%

46%

45%

14%

3%

0%

37%

1%

0%

2%

7%79%

54%

54%

51%

11%

24%

14%

0% 20% 40% 60% 80% 100%

Reusable Documents;
N=119

Templates; N=118

Others; N=19

Processes; N=118

Further Information;
N=117

Solutions; N=119

Tutorials; N=119

Very often Sometimes Rarely

Support for Learning

82%

38%

34%

33%

17%

43%

60%

55%

1%

19%

6%

12%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Solving Problems; N=115

Competence Development;
N=113

Knowledge Management
Integration; N=110

Learning; N=113

Fully Applicable Partially Applicable Not Applicable

Reasons for Information Gathering

82%

78%

78%

37%

27%

28%

18%

22%

21%

54%

49%

47%

1%

1%

1%

9%

24%

25%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Solving Problems; N=120

Knowledge Gaps; N=120

Personal Motivation; N=119

New Trends ; N=120

General Code of Practice;
N=119

Needed for Official
Processes; N=118

Full applicable Partially applicable Not Applicable

Need for Assistance: Phases, N=135

82

58

54

50

33

31

30

29

24

23

19

18

18

14

1

0 10 20 30 40 50 60 70 80 90

Programming

Requirement Elicitation / Analys is

Architecture Development, Des ign

Project planning, project management

Tests

Documentation

Knowledge and Experience Management

System Integration

Process Modelling

Defect and Change Management

Refactoring

Maintenance and evolution

Vers ioning

Measurement

Other:

Examples of Assistance

81%

69%

57%

51%

40%

40%

29%

15%

24%

30%

34%

38%

37%

32%

3%

4%

8%

13%

16%

17%

27%

1%

3%

5%

1%

6%

6%

12%

0% 20% 40% 60% 80% 100%

Completion of Texts, N =119

Explanations, N =118

Find Source, N =117

Correction, N =119

Find unused areas, N =118

Generate Skeleton, N =116

Transform Document , N =114

Often Sometimes Rarely Unknown

Displaying Assistance: Usefulness

78%

73%

67%

11%

2%

3%

14%

25%

28%

30%

16%

12%

8%

2%

5%

59%

83%

85%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Tooltips; N=118

Lists; N=118

Pictures; N=117

Video; N=115

Audio ; N=116

Animated; N=116

Very God / Good Undecided Bad / Very Bad

 8

As depicted in Chart 6, there is a tendency
towards quickly executable assistance in a cer-
tain situation. An example of these kinds of
assistance is the completion of texts. Complex
kinds of assistance generating skeletons or
transforming documents are used seldom or

never and are relatively unknown. For these
kinds of complex assistance, it needs to be
determined how they are communicated to the
user in an unobtrusive way. Furthermore, it
needs to be determined whether these kinds of
assistance are generally used less often because
they generate results that are not needed so
often during work.

The usefulness of the display format and
media assistance is one major issue in design-
ing intelligent assistance. As depicted in Chart
7, participants prefer simple, visually percepti-
ble forms of intelligent assistance: tooltips, lists
and pictures. Animated and audible forms of
assistance are regarded as disturbing. One
potential explanation is that these media types
demand the full attention of the user and
might distract from the current flow of work.
This means that a sensible, textual support is
sufficient to provide helpful assistance, which
in turn lowers the effort to develop intelligent
assistance.

This preference of unobtrusive forms of as-
sistance can also be found in Chart 8. Reactive
assistance, i.e., assistance that is explicitly re-
quested by the user, is clearly preferred. How-
ever, one third of the participants prefer proac-
tive assistance, which is displayed upon the
decision of the assistance system. Therefore, it
is an application-specific decision of whether
to provide reactive or proactive assistance. In
addition, if a proactive mode is available, an
assistance system should also provide a reac-
tive mode.

In summary, the analysis of known assis-
tance system affirmed the trend towards sim-
ple and problem-oriented forms of assistance.

Demand for Assistance
This third section was used to clarify further

requirements for intelligent assistance in Soft-
ware Engineering.

Chart 10 gives an overview, of which kinds
of assistance are wanted during the creation
and editing of documents (multiple answers
were allowed). Answering the question “Which
forms of assistance would you like for document creation
or editing?”, more than half of the participants
stated that showing problems, completion of
text, explanation of the currently edited docu-

Diagrams 2

Chart 8: Type of Assistance

Chart 10: Content Need

Chart 11: Information-Quality Need

Assistance for Product Creation, N=135

86

79

74

69

62

60

57

48

46

42

40

37

3

0 10 20 30 40 50 60 70 80 90 100

Showing Problems

Completion

Explanation

Show Unused Elements

Skeletons

Definition

Changes

Correction

Conformity Violations

Transformation

Expert

Impact

Other

Improvement of Information Management is wanted through Assistence
concerning..., N=135

95

73

69

63

57

55

43

42

33

27

21

0 10 20 30 40 50 60 70 80 90 100

Finding

Correctness

Availability

Consistency

Completeness

Usefulness

Distribution

Usage

Conformity

Understandability

No data

Type of Assistance Wanted, N=135

33%

47%
13%

7% Reactive
Proactive
Others
No Answer

 9

ment, and highlighting unused parts would be
desirable.

Chart 11 shows which aspect of information
management should be improved by intelligent
assistance and thus, gives directions for poten-
tial application areas. With multiple answers
possible, more than 50% of the participants
answered that finding information, correctness,
availability (getting the found information) and
consistency of the artifacts are potential areas
of application for intelligent assistance. Fur-
thermore, finding needed information is a
predominant aspect that should be improved
by intelligent assistance.

In summary, the participants state a general
potential to improve software quality by intelli-
gent assistance. Again, there is a tendency
found towards quick solutions of concrete
problems, with finding relevant information as
the main application area for intelligent assis-
tance.

Summary
The findings of this survey provide a general

characterization of the information need and
assistance in software engineering for an im-
portant subset of companies and can be used
as a starting point for people interested in the
development of intelligent assistance systems
and related quality assurance and improvement
activities. The survey results provided the fol-
lowing observations about intelligent assistance
as perceived by German participants from
SMEs (As this survey was conducted in Ger-
many we can’t generalize our findings globally.
To test for regional bias the survey should be
replicated in other countries):
• Intelligent assistance is mainly needed in

core software engineering phases such as
programming, design, or requirements de-
velopment.

• There is a demand and acceptance for unob-
trusive, quickly executable, and reactive as-

sistance that help to solve the problems at
hand.

• The phases where assistance is needed have
sufficiently formal and available documents
to generate plenty of supporting assistance
systems.
The full survey report [2] contains further

analysis about intelligent assistance in general
(e.g., the time needed for information search)
as well as an analysis of the tool infrastructure
in which intelligent assistance has to be inte-
grated (e.g., bug-tracking, versioning, require-
ments management systems). The findings are
particularly interesting for companies develop-
ing tools for software engineers as well as
managers responsible for the tool infrastruc-
ture and for employee training.

References
[1] M. Friedewald, H. D. Rombach, P. Stahl, M. Broy,

S. Hartkopf, S. Kimpeler, K. Kohler, R. Wucher, and
P. Zoche, "Status of the software development in-
dustry in Germany," Informatik Spektrum, vol. 24,
pp. 81-90, April 2001 2001.

[2] J. Rech, B. Decker, and E. Ras, "Intelligente Assis-
tenz in der Softwareentwicklung 2006: Zusammen-
fassung der Ergebnisse," Fraunhofer IESE, Kaiser-
slautern IESE Report: IESE-045.06/D, 2006.

[3] M. Lubars, C. Potts, and C. Richter, "A review of
the state of the practice in requirements modeling,"
in Requirements Engineering, 1993., Proceedings
of IEEE International Symposium on, 1993, pp. 2-
14.

[4] K. El Emam and N. H. Madhavji, "A field study of
requirements engineering practices in information
systems development," in Requirements Engineer-
ing, 1995., Proceedings of the Second IEEE Inter-
national Symposium on, 1995, pp. 68-80.

[5] U. Nikula, J. Sajaniemi, and H. Kälviäinen, "A
State-of-the-Practice Survey on Requirements En-
gineering in Small- and Medium-Sized Enterprises,"
Telecom Business Research Center Lappeenranta,
Lappeenranta, Finland, Research Report 2000.

[6] H. F. Hofmann and F. Lehner, "Requirements
engineering as a success factor in software pro-
jects," Software, IEEE, vol. 18, pp. 58-66, 2001.

[7] A. G. Koru and J. Tian, "Defect handling in medium
and large open source projects," IEEE Software,
vol. 21, pp. 54-61, 2004.

