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The disciplines of Artificial Intelligence and Software Engineering have many commonalities. Both deal with modeling 
real world objects from the real world like business processes, expert knowledge, or process models. This article gives 
a short overview about these disciplines and describes some current research topics against the background of com-
mon points of contact. 

1 Introduction 

During the last decades the disciplines of Artificial Intelli-
gence (AI) and Software Engineering (SE) have developed 
separately without much exchange of research results. In AI 
we researched techniques for the computations that made it 
possible to perceive, reason, and act. Research in SE was 
concerned with supporting human beings to develop better 
software faster. 

Today, several research directions of both disciplines 
come closer together and are beginning to build new re-
search areas. Software Agents play an important role as 
research objects in Distributed AI (DAI) as well as in agent-
oriented software engineering (AOSE). Knowledge-Based 
Systems (KBS) are being investigated for learning software 
organizations (LSO) as well as knowledge engineering. 
Ambient Intelligence (AmI) is a new research area for dis-
tributed, non-intrusive, and intelligent software systems both 
from the direction of how to build these systems as well as 
how to design the collaboration between ambient systems. 
Last but not least, Computational Intelligence (CI) plays an 
important role in research about software analysis or project 
management as well as knowledge discovery in databases 
or machine learning. 

Furthermore, in the last five to ten years several books, 
journals, and conferences have focused on the intersection 
between AI and SE. The international conference and asso-
ciated journal Automated Software Engineering (ASE) pre-
sents research about formal and autonomic approaches to 
support SE [2]. Similar topics with a stronger focus on KBS 
and knowledge management are published in the interna-
tional conference and associated journal of Software Engi-
neering and Knowledge Engineering (IJSEKE) [1]. 

In this paper, we give a short overview about the status 
and future trends in the intersection between AI and SE. We 
focus on the topics software agents, KBS, AmI, and CI as 
the areas covered by the contributions of this special issue. 
In Section 2 we describe the disciplines AI and SE. The 

focused topics are described in more detail in Section 3. 

Finally, in Section 4 we give an outlook for the next years 
and present new challenges for both disciplines. 

2 Artificial Intelligence and Software En-
gineering 

This section will shed some light on the disciplines AI 
and SE for those not familiar with the other discipline. 

Aspects of Artificial Intelligence 
There is a general agreement in the AI community that 

the discipline of AI was born at the Dartmouth conference in 
1956. According to Winston [81] “AI is the study of the com-
putations that make it possible to perceive, reason, and act”. 
Wachsmuth [78] assumes this definition and points out that, 
“AI differs from most of psychology because of its greater 
emphasis on computation, and it differs from most of com-
puter science because of its greater emphasis on percep-
tion, reasoning, and action”. As a field of academic study, 
many AI researchers reach to understand intelligence by 
becoming able to produce effects of intelligence: intelligent 
behavior. One element in AI’s methodology is that progress 
is sought by building systems that perform: synthesis before 
analysis [78]. “Systems are good science”, as Hendler said 
[34]. Or more drastically by Wachsmuth [78]: “it is not the 
aim of AI to build intelligent machines having understood 
natural intelligence, but to understand natural intelligence by 
building intelligent machines”. Even more strikingly Aaron 
Sloman puts it this way (by citing his colleague Russel 
Beale): "AI can be defined as the attempt to get real ma-
chines to behave like the ones in the movies”. In addition, 
he points out that AI has two main strands, a scientific 
strand and an engineering strand, which overlap considera-
bly in their concepts, methods, and tools, though their objec-
tives are very different. 

This view is supported by Wahlster [79] who clarifies that 
AI has two different types of goals, one motivated by cogni-
tive science, the other by the engineering sciences (cf. 
Figure 1). 
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Figure 1 AI and  Related Research Areas (adapted from [79]) 

A further sub-division (adapted from Richter [59] and 
Abecker [4]) of AI into sub-fields, methods, and techniques 
is shown in Figure 2. 

Figure 2 AI Fields, Methods, and Techniques 

For SE the scientific strand orientating towards cognitive 
science and humanities in general could be a helpful guid-
ance for interdisciplinary research. Of course, there is a 
strong overlap between SE and the engineering strand of 
AI. An important part of the latter are KBS. 

Richter [59] defines three different levels as essential for 
describing KBS: the cognitive layer (human-oriented, ra-
tional, informal), the representation layer (formal, logical), 
and the implementation layer (machine-oriented, data struc-
tures and programs). These levels are shown in Figure 3. 
Between the knowledge utterance and its machine utiliza-
tion several transformations have to be performed (thick 
arrows). They point to the direction of increased structuring 
within the layers and proceed from the cognitive form to a 
more formal and more efficiently processed form. The letter 
A is a reminder for Acquisition (which is human-oriented) 
while C is a shorthand for Compilation (machine-oriented). 
Each syntactic result in the range of a transformation be-
tween layers has to be associated with the meaning in the 
domain of the transformation. The most interesting and 
difficult arrow is the inverse transformation back to the cog-
nitive layer; it is usually called explanation.  

Figure 3 The Three Levels of Knowledge-Based Systems 

Why is AI interesting for researchers from SE? It can 
provide the initial technology and first (successful) applica-
tions as well as a testing environment for ideas. The inclu-
sion of research supports the enabling of human-enacted 
processes and increases user acceptance. AI technology 
can help to base the overall SE method on a concrete tech-
nology, providing sufficient detail for the initial method de-
scription, and through the available reference technology 
clarifying the semantics of the respective method. In addi-
tion, other AI techniques naturally substituting/extending the 
chosen technology can be used for improved versions of the 
SE method. 

Aspects of Software Engineering 
The discipline of SE was born 1968 at the NATO confer-

ence in Garmisch-Partenkirchen, Germany [52, 71] where 
the term “SE crisis” was coined. Its main concern is the 
efficient and effective development of high-qualitative and 
mostly very large software systems. The goal is to support 
software engineers and managers in order to develop better 
software faster with (intelligent) tools and methods. 

Since its beginning several research directions devel-
oped and matured in this broad field. Figure 4 shows the 
software development reference model integrating important 
phases in a software lifecycle. Project Engineering is con-
cerned with the acquisition, definition, management, moni-
toring, and controlling of software development projects as 
well as the management of risks emerging during project 
execution. Methods from Requirements Engineering are 
developed to support the formal and unambiguous elicitation 
of software requirements from the customers, to improve the 
usability of the systems, and to establish a binding and 
unambiguous definition of the resulting system during and 
after software project definition. The research for Software 
Design & Architecture advances techniques for the devel-
opment, management, and analysis of (formal) descriptions 
of abstract representations of the software system as well 
as required tools and notations (e.g., UML). Techniques to 
support the professional Programming of software are ad-
vanced to develop highly maintainable, efficient, and effec-
tive source code. Verification & Validation is concerned with 
the planning, development, and execution of (automated) 
tests and inspections (formal and informal) in order to dis-
cover defects or estimate the quality of parts of the software. 
Research for Implementation & Distribution is responsible 
for the development of methods for the introduction at the 
customer’s site, support during operation, and integration in 
existing IT infrastructure. 

After delivery to the customer software systems typically 
switch into a Software Evolution phase. Here the focus of 
research lies on methods in order to add new and perfect 
existing functions of the system. Similarly, in the parallel 
phase Software Maintenance techniques are developed for 
the adaptation to environmental changes, prevention of 
foreseeable problems, and correction of noticed defects. If 
the environment changes dramatically or further enhance-
ments are impossible the system either dies or enters a 
Reengineering phase. Here techniques for software under-
standing and reverse engineering of software design are 
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used to port or migrate a system to a new technology (e.g., 
from Ada to Java or from a monolithic to a client/server 
architecture) and obtain a maintainable system. 

Since the eighties the systematic reuse and manage-
ment of experiences, knowledge, products, and processes 
was developed and named Experience Factory (EF) [16]. 
This field, also known as Learning Software Organization 
(LSO), researches methods and techniques for the man-
agement, elicitation, and adaptation of reusable artifacts 
from SE projects. 

Figure 4 Software Development Reference Model 

Why is SE for AI researchers interesting? It supports 
systematic AI application development, the operating of AI 
applications in real-life environments, as well as evaluating 
(e.g., [6]), maintaining (e.g., [54]), continuously improving, 
and systematically comparing them with alternative ap-
proaches (e.g., another modeling method). SE also supports 
the systematic definition of the respective application do-
mains, e.g., through scoping methods [67]. 

3 Intersections between AI and SE 

While the intersections between AI and SE are currently 
rare they are multiplying and growing. First points of contact 
emerged from the application of techniques from one disci-
pline to the other [55]. 

Today, methods and techniques from both disciplines 
support the practice and research in the respectively other 
research area. Figure 5 depicts some research areas in AI 
and SE as well as their intersections. 

Figure 5 Research Areas in AI and SE and their Intersections 

Systematic software development (including Require-
ments Engineering (RE), Engineering of Designs (DE), or 
source code (CE)) or project management (PM) methods 
help to build intelligent systems while using advanced data 
analysis techniques. Knowledge Acquisition (KA) techniques 
[21] help to build EF and intelligent ambient systems like 
Domain Modeling (DM) techniques support the construction 
of requirements for software systems and product lines. 
Case-based Reasoning (CBR) is used to support the re-
trieval and management of data in EF. Information Agents 
are used in SE to simulate development processes or to 
distribute and explain change requests.  

Agent-Oriented Software Engineering 
Software Agents are typically small intelligent systems 

that cooperate to reach a common goal. These agents are a 
relatively new area where research from KI and SE inter-
sects. From the AI side the focus in this field lies on even 
more intelligent and autonomous systems to solve more 
complex problems using communication languages between 
agents. In SE agents are seen as systems that need more 
or less specialized formal methods for their development, 
verification, validation, and maintenance.  

Agent-Oriented Software Engineering (AOSE) (a.k.a. 
Agent Based Software Engineering (ABSE)) as related to 
object-oriented SE (OOSE) is centered around systems 
where objects in a model of a software system are intelli-
gent, autonomous, and proactive. Currently the systematic 
development and representation of software agents is re-
searched and languages for their representation during 
development, like the Agent UML [19], were created. For 
example, several methods like MASSIVE by Lind [45], GAIA 
by Wooldridge et al. [84], MESSAGE by Caire et al. [25], 
TROPOS by Castro et al. [26], or MAS-CommonKADS by 
Iglesias et al. [38] were developed.  

Agents and AOSE are applied in many areas like intelli-
gent and agent-based user interfaces to improve system 
usability, trading agents in eCommerce to maximize profits, 
or assisting agents in everyday work to automate common 
tasks (e.g., booking hotel rooms) [39]. Furthermore software 
agents are increasingly used to simulate real world domains 
(e.g., traffic control) or work processes in SE. But agent 
technology is not a shiny new paradigm without problems – 
some pitfalls for AOSE are described by Wooldridge in [85]. 

A state of the art survey about agent-oriented SE by 
Tveit summarized previous publications and methods [76]. 
Formal methods for the specification and verification of 
systems were developed in order to describe, proof, and 
check the goals, beliefs, and interaction of agents and agent 
systems [82, 83].  

Today, more and more workshops are being organized 
covering the common ground of intelligent agents and SE. 
Examples for communities in this field are the Workshop 
Software Engineering for Large-Scale Multi-Agent Systems 
(SELMAS 2004) [46], the International Workshop Series on 
Agent-Oriented Software Engineering (AOSE 2004) [33], the 
International Workshop on Agent-Oriented Methodologies 
(AO 2003), International Workshop on Radical Agent Con-
cepts (WRAC 2003) [75], or the International Joint Confer-
ence on Autonomous Agents & Multi-Agent Systems 
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(AAMAS 2004) [64]. Workshops on more formal aspects of 
AOSE are FAABS or KIMAS [36, 37]. 

As summarized in the Agent Technology Roadmap by 
the AgentLink network future research is required to enable 
agent systems to adapt autonomously to communication 
languages, behavioral patterns, or to support the reuse of 
knowledge bases [47]. 

Knowledge-Based Software Engineering 
SE is a highly dynamic field in terms of research and 

knowledge, and it depends heavily upon the experience of 
experts for the development and advancement of its meth-
ods, tools, and techniques. For example, the tendency to 
define and describe "best practices" or "lessons learned" is 
quite distinctive in the literature [13]. As a consequence, it 
was the SE field where an organization, the EF, was intro-
duced that was explicitly responsible to systematically deal 
with experience. An EF is a logical and/or physical infra-
structure for continuous learning from experience and in-
cludes an experience base (EB) for the storage and reuse of 
knowledge. The EF approach was invented in the mid-
eighties [15]. As practice shows, it is substantial for the 
support of organizational learning that the project organiza-
tion and the learning organization are separated [16] (see 
also Figure 4).  

The initial example for an operating EF was the NASA 
SE Laboratory [62]. In the meantime EF applications were 
developed in the USA and also in Europe [8, 73]. The great 
amount of successful EF applications gave the ignition to 
study LSOs more intensively regarding the methodology for 
building up and running an EF [63]. This also includes the 
definition of related processes, roles, and responsibilities 
and, last but not least, the technical realization. The most 
detailed methodology for the build-up of an EF/EB on pro-
ject knowledge also for the presentation of the according 
processes is given in [73], an extension concerning evalua-
tion, maintenance, and architecture can be found in [54]. 

EF is increasingly emerging towards a generic approach 
for reuse of knowledge and especially experience. This 
includes also applications independent of the SE domain, 
e.g., supporting the continuous improvement process in 
hospitals [9], the field of help-desk and service support [72], 
and the management of "non-software"-projects [23]. Future 
trends in the scope of EF include the detailing of all neces-
sary policies, validation, and empirical evaluation [17, 73], 
gaining experience with the technical realization of huge 
EFs [58], the integration with the according business proc-
esses [10], and the running of EFs [53]. 

In the areas of Cognitive Science and AI, CBR emerged 
in the late seventies and early eighties as a model for hu-
man problem solving and learning [65, 66]. In AI, this led to 
a focus of KBS on experience (case-specific knowledge) in 
the late eighties and beginning nineties, mostly in the form 
of problem-solution cases [14]. Since several years there 
has been a strong tendency in the CBR community [7] to 
develop methods for dealing with more complex applica-
tions. One example is the use of CBR for KM [5], another 
one is its use for SE [69]. A very important issue here is the 
integration of CBR with EF: Since the mid-nineties CBR is 
used both on the organizational EF process level as well as 
the technical EB implementation level [12, 35, 74]. Mean-
while this approach establishes itself more and more [7, 20, 

40]. Usually product- and process-oriented approaches are 
used independently from each other, or as alternatives. As a 
first step a deep integration of the approaches of EF and 
CBR has been achieved [7, 11, 54, 73]. 

An overview on relevant approaches for knowledge-
based SE is given in [11, 13, 27, 28, 43, 54, 73]. Relevant 
events are part of the LSO, SEKE, ASE, and CBR 

(www.iccbr.org) event series (as well as the corresponding 
journals including the International Journal on Knowledge 
and Information Systems (KAIS)). Conferences and work-
shops (again as well as journals) on knowledge manage-
ment are of interest if they have a concrete relationship to 
software-related issues. Further relevant events are the 
Joint Conference on Knowledge-Based SE (JCKBSE) 2002 
[80] and 2004, and the workshops on Knowledge Oriented 
Maintenance (KOM 2004), or Knowledge-Based Object-
Oriented SE (KBOOSE 2002). 

Computational Intelligence & KDD 
The research area CI has recently observed an increas-

ing interest from researchers of both disciplines. Techniques 
like neural networks, evolutionary algorithms, or fuzzy sys-
tems are increasingly applied and adapted for specific SE 
problems. They are used to estimate the progress of pro-
jects to support software project management [24], for the 
discovery of defect modules to ensure software quality, or to 
plan software testing and verification activities to minimize 
the effort for quality assurance [41, 44, 56]. 

In a state-of-the-art survey about KDD in SE, Mendonca 
and Sunderhaft summarized previous publications as well 
as several mining techniques and tools [48]. One of the first 
publications that explicitly collected contributions to KDD for 
SE data was the IJSEKE Special Issue in 1999 [50]. More 
and more workshops are being organized on CI and SE. 
Examples for workshops are WITSE (Intelligent Technolo-
gies for SE), MSR (Mining Software Repositories), DMSK 
(Data Mining for SE and Knowledge Engineering), and 
SCASE (Soft Computing applied to SE).  

Today, many application areas for KDD in SE have been 
established in fields like quality management, project man-
agement, risk management, software reuse, or software 
maintenance. For example, Khoshgoftaar et al. applied and 
adapted classification techniques to software quality data 
[42]. Dick researched determinism of software failures with 
time series analysis and clustering techniques [31]. Cook 
and Wolf used the Markov approach to mine process and 
workflow models from activity data [29]. Pozewauning ex-
amined the discovery and classification of component be-
havior from code and test data to support the reuse of soft-
ware [57]. Michail used association rules to detect reuse 
patterns (i.e., typical usage of classes from libraries) [49]. As 
an application of KDD in software maintenance, Shirabad 
developed an instrument for the extraction of relationships in 
software systems by inductive methods based on data from 
various software repositories (e.g., update records, version-
ing systems) to improve impact analysis in maintenance 
activities [70]. Zimmermann and colleagues pursue the 
same goal using a technique similar to CBR. In order to 
support software maintainers with related experiences in 
form of association rules about changes in software systems 
they mined association rules from a versioning system by 
collecting transactions including a specific change [86]. 
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Morasca and Ruhe built a hybrid approach for the prediction 
of defect modules in software systems with rough sets and 
logistic regression based on several metrics (e.g., LOC) 
[51]. 

Future research in this field is required to analyze formal 
project plans for risk discovery, to acquire project informa-
tion for project management, or directly mine software rep-
resentations (e.g., UML, sourcecode) to detect defects and 
flaws early in development.  

Ambient Intelligence 
The idea behind AmI are sensitive, adaptive, and reac-

tive systems that are informed about the user’s needs, hab-
its, and emotions in order to support them in their daily work 
[30]. Therefore, techniques for autonomous, intelligent, 
robust, and self-learning systems are needed to enable 
communication between systems (machine-machine inter-
faces and ontologies) or users and systems (human-
machine interfaces).  

AmI is based on several research areas, like ubiquitous 
and pervasive computing, intelligent systems, and context 
awareness [68]. Research for AmI tries to build an environ-
ment similar to the previously mentioned research areas like 
intelligent software agents, KBS, as well as knowledge dis-
covery (e.g. to detect and analyze foreign systems and 
software).  

There are several AI research areas for the development 
of smart algorithms for AmI applications [77], e.g., user 
profiling,  context awareness, scene understanding [3], or 
planning and negotiation tasks [30]. Research from the SE 
side is concerned with model-driven development for mobile 
computing [30], the verification of mobile code [61], the 
specification of adaptive systems [60], or the design of em-
bedded systems [18]. Additionally, we need intelligent hu-
man interfaces from a usability perspective that translate 
between users and a new configuration of the ambient sys-
tem. A fusion of these two fields could be established in 
order to analyze and evaluate foreign software systems that 
try to connect with the own system  to be executed on its 
hardware. 

Currently, research for AmI is primarily funded by the EU 
as well as the German National Science Foundation (DFG). 
For example, several scenarios describing the vision of the 
EU were published in [32], and the integrated project 
WearIT@Work is funded at the University of Bremen which 
emphasizes AmI for work processes. In Germany, the DFG 
funded the „Forschungsschwerpunkt Ambient Intelligence“ 
at the Technical University of Kaiserslautern  
(http://www.eit.uni-kl.de/AmI). 

Various workshops and conferences on AmI were estab-
lished to foster exchange about AmI.  Examples for these 
meetings are the European Symposium on Ambient Intelli-
gence (EUSAI) [3], Workshop on Ambient Intelligence 
(WAI), Workshop on Ambient Intelligence for Scientific Dis-
covery (AMDI), Workshop on Ambient intelligence @ Work, 
International Conference on Ubiquitous Computing (Ubi-
Comp) [22], or the Workshop on Agents for Ubiquitous 
Computing (UbiAgents). 

4 Outlook 

It is obvious from this overview that strong ties exist be-
tween artificial intelligence and software engineering that 
offer a great potential for future research. Many new appli-
cations and research fields of interest to both disciplines will 
develop covering knowledge-based systems for learning 
software organizations, the development of computational 
intelligence and knowledge discovery techniques for soft-
ware artifacts, agent-oriented SE, or professional develop-
ment of ambient intelligence systems. 

As a conclusion, we have identified several research 
fields interesting for both disciplines. The articles in the 
remainder of this special issue elaborate on specific re-
search problems in these intersections. 
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