
Artificial Intelligence and Software
Engineering: Status and Future Trends

Jörg Rech, Klaus-Dieter Althoff

The disciplines of Artificial Intelligence and Software Engineering have many commonalities. Both deal with modeling
real world objects from the real world like business processes, expert knowledge, or process models. This article gives
a short overview about these disciplines and describes some current research topics against the background of com-
mon points of contact.

1 Introduction

During the last decades the disciplines of Artificial Intelli-
gence (AI) and Software Engineering (SE) have developed
separately without much exchange of research results. In AI
we researched techniques for the computations that made it
possible to perceive, reason, and act. Research in SE was
concerned with supporting human beings to develop better
software faster.

Today, several research directions of both disciplines
come closer together and are beginning to build new re-
search areas. Software Agents play an important role as
research objects in Distributed AI (DAI) as well as in agent-
oriented software engineering (AOSE). Knowledge-Based
Systems (KBS) are being investigated for learning software
organizations (LSO) as well as knowledge engineering.
Ambient Intelligence (AmI) is a new research area for dis-
tributed, non-intrusive, and intelligent software systems both
from the direction of how to build these systems as well as
how to design the collaboration between ambient systems.
Last but not least, Computational Intelligence (CI) plays an
important role in research about software analysis or project
management as well as knowledge discovery in databases
or machine learning.

Furthermore, in the last five to ten years several books,
journals, and conferences have focused on the intersection
between AI and SE. The international conference and asso-
ciated journal Automated Software Engineering (ASE) pre-
sents research about formal and autonomic approaches to
support SE [2]. Similar topics with a stronger focus on KBS
and knowledge management are published in the interna-
tional conference and associated journal of Software Engi-
neering and Knowledge Engineering (IJSEKE) [1].

In this paper, we give a short overview about the status
and future trends in the intersection between AI and SE. We
focus on the topics software agents, KBS, AmI, and CI as
the areas covered by the contributions of this special issue.
In Section 2 we describe the disciplines AI and SE. The

focused topics are described in more detail in Section 3.

Finally, in Section 4 we give an outlook for the next years
and present new challenges for both disciplines.

2 Artificial Intelligence and Software En-
gineering

This section will shed some light on the disciplines AI
and SE for those not familiar with the other discipline.

Aspects of Artificial Intelligence
There is a general agreement in the AI community that

the discipline of AI was born at the Dartmouth conference in
1956. According to Winston [81] “AI is the study of the com-
putations that make it possible to perceive, reason, and act”.
Wachsmuth [78] assumes this definition and points out that,
“AI differs from most of psychology because of its greater
emphasis on computation, and it differs from most of com-
puter science because of its greater emphasis on percep-
tion, reasoning, and action”. As a field of academic study,
many AI researchers reach to understand intelligence by
becoming able to produce effects of intelligence: intelligent
behavior. One element in AI’s methodology is that progress
is sought by building systems that perform: synthesis before
analysis [78]. “Systems are good science”, as Hendler said
[34]. Or more drastically by Wachsmuth [78]: “it is not the
aim of AI to build intelligent machines having understood
natural intelligence, but to understand natural intelligence by
building intelligent machines”. Even more strikingly Aaron
Sloman puts it this way (by citing his colleague Russel
Beale): "AI can be defined as the attempt to get real ma-
chines to behave like the ones in the movies”. In addition,
he points out that AI has two main strands, a scientific
strand and an engineering strand, which overlap considera-
bly in their concepts, methods, and tools, though their objec-
tives are very different.

This view is supported by Wahlster [79] who clarifies that
AI has two different types of goals, one motivated by cogni-
tive science, the other by the engineering sciences (cf.
Figure 1).

2

Figure 1 AI and Related Research Areas (adapted from [79])

A further sub-division (adapted from Richter [59] and
Abecker [4]) of AI into sub-fields, methods, and techniques
is shown in Figure 2.

Figure 2 AI Fields, Methods, and Techniques

For SE the scientific strand orientating towards cognitive
science and humanities in general could be a helpful guid-
ance for interdisciplinary research. Of course, there is a
strong overlap between SE and the engineering strand of
AI. An important part of the latter are KBS.

Richter [59] defines three different levels as essential for
describing KBS: the cognitive layer (human-oriented, ra-
tional, informal), the representation layer (formal, logical),
and the implementation layer (machine-oriented, data struc-
tures and programs). These levels are shown in Figure 3.
Between the knowledge utterance and its machine utiliza-
tion several transformations have to be performed (thick
arrows). They point to the direction of increased structuring
within the layers and proceed from the cognitive form to a
more formal and more efficiently processed form. The letter
A is a reminder for Acquisition (which is human-oriented)
while C is a shorthand for Compilation (machine-oriented).
Each syntactic result in the range of a transformation be-
tween layers has to be associated with the meaning in the
domain of the transformation. The most interesting and
difficult arrow is the inverse transformation back to the cog-
nitive layer; it is usually called explanation.

Figure 3 The Three Levels of Knowledge-Based Systems

Why is AI interesting for researchers from SE? It can
provide the initial technology and first (successful) applica-
tions as well as a testing environment for ideas. The inclu-
sion of research supports the enabling of human-enacted
processes and increases user acceptance. AI technology
can help to base the overall SE method on a concrete tech-
nology, providing sufficient detail for the initial method de-
scription, and through the available reference technology
clarifying the semantics of the respective method. In addi-
tion, other AI techniques naturally substituting/extending the
chosen technology can be used for improved versions of the
SE method.

Aspects of Software Engineering
The discipline of SE was born 1968 at the NATO confer-

ence in Garmisch-Partenkirchen, Germany [52, 71] where
the term “SE crisis” was coined. Its main concern is the
efficient and effective development of high-qualitative and
mostly very large software systems. The goal is to support
software engineers and managers in order to develop better
software faster with (intelligent) tools and methods.

Since its beginning several research directions devel-
oped and matured in this broad field. Figure 4 shows the
software development reference model integrating important
phases in a software lifecycle. Project Engineering is con-
cerned with the acquisition, definition, management, moni-
toring, and controlling of software development projects as
well as the management of risks emerging during project
execution. Methods from Requirements Engineering are
developed to support the formal and unambiguous elicitation
of software requirements from the customers, to improve the
usability of the systems, and to establish a binding and
unambiguous definition of the resulting system during and
after software project definition. The research for Software
Design & Architecture advances techniques for the devel-
opment, management, and analysis of (formal) descriptions
of abstract representations of the software system as well
as required tools and notations (e.g., UML). Techniques to
support the professional Programming of software are ad-
vanced to develop highly maintainable, efficient, and effec-
tive source code. Verification & Validation is concerned with
the planning, development, and execution of (automated)
tests and inspections (formal and informal) in order to dis-
cover defects or estimate the quality of parts of the software.
Research for Implementation & Distribution is responsible
for the development of methods for the introduction at the
customer’s site, support during operation, and integration in
existing IT infrastructure.

After delivery to the customer software systems typically
switch into a Software Evolution phase. Here the focus of
research lies on methods in order to add new and perfect
existing functions of the system. Similarly, in the parallel
phase Software Maintenance techniques are developed for
the adaptation to environmental changes, prevention of
foreseeable problems, and correction of noticed defects. If
the environment changes dramatically or further enhance-
ments are impossible the system either dies or enters a
Reengineering phase. Here techniques for software under-
standing and reverse engineering of software design are

Robotics

Mathematical
Reasoning

Natural Language
Understanding & Dictating

Vision & Image
Understanding

Expert Systems

Machine Learning

Neural Networks

Knowledge
Representation

Problem
SolvingPlanning

Heuristic
Search

Pattern
Recognition

Logical &
approximative

reasoning
Games

Agents

Knowledge
Engineering

Learning from
experience

AI Methods and Techniques AI FieldsAI Fields

Robotics

Mathematical
Reasoning

Natural Language
Understanding & Dictating

Vision & Image
Understanding

Expert Systems

Machine Learning

Neural Networks

Knowledge
Representation

Problem
SolvingPlanning

Heuristic
Search

Pattern
Recognition

Logical &
approximative

reasoning
Games

Agents

Knowledge
Engineering

Learning from
experience

AI Methods and Techniques AI FieldsAI Fields

Engineering Sciences

Bio Sciences
Psychology

Computer
Science

Philosophy
Linguistics

AI Cognitive
Science

Engineering Sciences

Bio Sciences
Psychology

Computer
Science

Philosophy
Linguistics

AI Cognitive
Science

C
C

A Cognitive Layer

Representation Layer

Implementation Layer

A

 3

used to port or migrate a system to a new technology (e.g.,
from Ada to Java or from a monolithic to a client/server
architecture) and obtain a maintainable system.

Since the eighties the systematic reuse and manage-
ment of experiences, knowledge, products, and processes
was developed and named Experience Factory (EF) [16].
This field, also known as Learning Software Organization
(LSO), researches methods and techniques for the man-
agement, elicitation, and adaptation of reusable artifacts
from SE projects.

Figure 4 Software Development Reference Model

Why is SE for AI researchers interesting? It supports
systematic AI application development, the operating of AI
applications in real-life environments, as well as evaluating
(e.g., [6]), maintaining (e.g., [54]), continuously improving,
and systematically comparing them with alternative ap-
proaches (e.g., another modeling method). SE also supports
the systematic definition of the respective application do-
mains, e.g., through scoping methods [67].

3 Intersections between AI and SE

While the intersections between AI and SE are currently
rare they are multiplying and growing. First points of contact
emerged from the application of techniques from one disci-
pline to the other [55].

Today, methods and techniques from both disciplines
support the practice and research in the respectively other
research area. Figure 5 depicts some research areas in AI
and SE as well as their intersections.

Figure 5 Research Areas in AI and SE and their Intersections

Systematic software development (including Require-
ments Engineering (RE), Engineering of Designs (DE), or
source code (CE)) or project management (PM) methods
help to build intelligent systems while using advanced data
analysis techniques. Knowledge Acquisition (KA) techniques
[21] help to build EF and intelligent ambient systems like
Domain Modeling (DM) techniques support the construction
of requirements for software systems and product lines.
Case-based Reasoning (CBR) is used to support the re-
trieval and management of data in EF. Information Agents
are used in SE to simulate development processes or to
distribute and explain change requests.

Agent-Oriented Software Engineering
Software Agents are typically small intelligent systems

that cooperate to reach a common goal. These agents are a
relatively new area where research from KI and SE inter-
sects. From the AI side the focus in this field lies on even
more intelligent and autonomous systems to solve more
complex problems using communication languages between
agents. In SE agents are seen as systems that need more
or less specialized formal methods for their development,
verification, validation, and maintenance.

Agent-Oriented Software Engineering (AOSE) (a.k.a.
Agent Based Software Engineering (ABSE)) as related to
object-oriented SE (OOSE) is centered around systems
where objects in a model of a software system are intelli-
gent, autonomous, and proactive. Currently the systematic
development and representation of software agents is re-
searched and languages for their representation during
development, like the Agent UML [19], were created. For
example, several methods like MASSIVE by Lind [45], GAIA
by Wooldridge et al. [84], MESSAGE by Caire et al. [25],
TROPOS by Castro et al. [26], or MAS-CommonKADS by
Iglesias et al. [38] were developed.

Agents and AOSE are applied in many areas like intelli-
gent and agent-based user interfaces to improve system
usability, trading agents in eCommerce to maximize profits,
or assisting agents in everyday work to automate common
tasks (e.g., booking hotel rooms) [39]. Furthermore software
agents are increasingly used to simulate real world domains
(e.g., traffic control) or work processes in SE. But agent
technology is not a shiny new paradigm without problems –
some pitfalls for AOSE are described by Wooldridge in [85].

A state of the art survey about agent-oriented SE by
Tveit summarized previous publications and methods [76].
Formal methods for the specification and verification of
systems were developed in order to describe, proof, and
check the goals, beliefs, and interaction of agents and agent
systems [82, 83].

Today, more and more workshops are being organized
covering the common ground of intelligent agents and SE.
Examples for communities in this field are the Workshop
Software Engineering for Large-Scale Multi-Agent Systems
(SELMAS 2004) [46], the International Workshop Series on
Agent-Oriented Software Engineering (AOSE 2004) [33], the
International Workshop on Agent-Oriented Methodologies
(AO 2003), International Workshop on Radical Agent Con-
cepts (WRAC 2003) [75], or the International Joint Confer-
ence on Autonomous Agents & Multi-Agent Systems

AmI

CI

AOSEDAI

KBS

Agents

PM DE

CE

RE

CBR

KA

EF

Learning

DM

Robotics

Mathematical
Reasoning

Natural Language
Understanding & Dictating

Vision & Image
Understanding

Expert Systems

Machine Learning

Neural Networks

Knowledge
Representation

Problem
SolvingPlanning

Heuristic
Search

Pattern
Recognition

Logical &
approximative

reasoning
Games

Agents

Knowledge
Engineering

Learning from
experience

AI Methods and Techniques AI FieldsAI Fields

Robotics

Mathematical
Reasoning

Natural Language
Understanding & Dictating

Vision & Image
Understanding

Expert Systems

Machine Learning

Neural Networks

Knowledge
Representation

Problem
SolvingPlanning

Heuristic
Search

Pattern
Recognition

Logical &
approximative

reasoning
Games

Agents

Knowledge
Engineering

Learning from
experience

AI Methods and Techniques AI FieldsAI Fields

Artificial Intelligence Software Engineering

Fig. 2

Maintenance Project n

Experience Factory

Development Project n
Development Project 1

Quality Assurance & Management

Distribution &
Implementation

Experience Base
• Experiences about Processes,

Products, Technologies, …
• Reusable models, processes,

products, plans, …

Project Database n
Project Database 1

• Software Documentation
• Measured Data

V
er

ifi
ca

tio
n

&
 V

al
id

at
io

n

Requirement
Analysis

Design

Programming

P
ro

je
ct

 P
la

nn
in

g

Maintenance Project 1

Re-engineering

Evolution &
Maintenance

Support

Project Monitoring & Management

Testing

4

(AAMAS 2004) [64]. Workshops on more formal aspects of
AOSE are FAABS or KIMAS [36, 37].

As summarized in the Agent Technology Roadmap by
the AgentLink network future research is required to enable
agent systems to adapt autonomously to communication
languages, behavioral patterns, or to support the reuse of
knowledge bases [47].

Knowledge-Based Software Engineering
SE is a highly dynamic field in terms of research and

knowledge, and it depends heavily upon the experience of
experts for the development and advancement of its meth-
ods, tools, and techniques. For example, the tendency to
define and describe "best practices" or "lessons learned" is
quite distinctive in the literature [13]. As a consequence, it
was the SE field where an organization, the EF, was intro-
duced that was explicitly responsible to systematically deal
with experience. An EF is a logical and/or physical infra-
structure for continuous learning from experience and in-
cludes an experience base (EB) for the storage and reuse of
knowledge. The EF approach was invented in the mid-
eighties [15]. As practice shows, it is substantial for the
support of organizational learning that the project organiza-
tion and the learning organization are separated [16] (see
also Figure 4).

The initial example for an operating EF was the NASA
SE Laboratory [62]. In the meantime EF applications were
developed in the USA and also in Europe [8, 73]. The great
amount of successful EF applications gave the ignition to
study LSOs more intensively regarding the methodology for
building up and running an EF [63]. This also includes the
definition of related processes, roles, and responsibilities
and, last but not least, the technical realization. The most
detailed methodology for the build-up of an EF/EB on pro-
ject knowledge also for the presentation of the according
processes is given in [73], an extension concerning evalua-
tion, maintenance, and architecture can be found in [54].

EF is increasingly emerging towards a generic approach
for reuse of knowledge and especially experience. This
includes also applications independent of the SE domain,
e.g., supporting the continuous improvement process in
hospitals [9], the field of help-desk and service support [72],
and the management of "non-software"-projects [23]. Future
trends in the scope of EF include the detailing of all neces-
sary policies, validation, and empirical evaluation [17, 73],
gaining experience with the technical realization of huge
EFs [58], the integration with the according business proc-
esses [10], and the running of EFs [53].

In the areas of Cognitive Science and AI, CBR emerged
in the late seventies and early eighties as a model for hu-
man problem solving and learning [65, 66]. In AI, this led to
a focus of KBS on experience (case-specific knowledge) in
the late eighties and beginning nineties, mostly in the form
of problem-solution cases [14]. Since several years there
has been a strong tendency in the CBR community [7] to
develop methods for dealing with more complex applica-
tions. One example is the use of CBR for KM [5], another
one is its use for SE [69]. A very important issue here is the
integration of CBR with EF: Since the mid-nineties CBR is
used both on the organizational EF process level as well as
the technical EB implementation level [12, 35, 74]. Mean-
while this approach establishes itself more and more [7, 20,

40]. Usually product- and process-oriented approaches are
used independently from each other, or as alternatives. As a
first step a deep integration of the approaches of EF and
CBR has been achieved [7, 11, 54, 73].

An overview on relevant approaches for knowledge-
based SE is given in [11, 13, 27, 28, 43, 54, 73]. Relevant
events are part of the LSO, SEKE, ASE, and CBR

(www.iccbr.org) event series (as well as the corresponding
journals including the International Journal on Knowledge
and Information Systems (KAIS)). Conferences and work-
shops (again as well as journals) on knowledge manage-
ment are of interest if they have a concrete relationship to
software-related issues. Further relevant events are the
Joint Conference on Knowledge-Based SE (JCKBSE) 2002
[80] and 2004, and the workshops on Knowledge Oriented
Maintenance (KOM 2004), or Knowledge-Based Object-
Oriented SE (KBOOSE 2002).

Computational Intelligence & KDD
The research area CI has recently observed an increas-

ing interest from researchers of both disciplines. Techniques
like neural networks, evolutionary algorithms, or fuzzy sys-
tems are increasingly applied and adapted for specific SE
problems. They are used to estimate the progress of pro-
jects to support software project management [24], for the
discovery of defect modules to ensure software quality, or to
plan software testing and verification activities to minimize
the effort for quality assurance [41, 44, 56].

In a state-of-the-art survey about KDD in SE, Mendonca
and Sunderhaft summarized previous publications as well
as several mining techniques and tools [48]. One of the first
publications that explicitly collected contributions to KDD for
SE data was the IJSEKE Special Issue in 1999 [50]. More
and more workshops are being organized on CI and SE.
Examples for workshops are WITSE (Intelligent Technolo-
gies for SE), MSR (Mining Software Repositories), DMSK
(Data Mining for SE and Knowledge Engineering), and
SCASE (Soft Computing applied to SE).

Today, many application areas for KDD in SE have been
established in fields like quality management, project man-
agement, risk management, software reuse, or software
maintenance. For example, Khoshgoftaar et al. applied and
adapted classification techniques to software quality data
[42]. Dick researched determinism of software failures with
time series analysis and clustering techniques [31]. Cook
and Wolf used the Markov approach to mine process and
workflow models from activity data [29]. Pozewauning ex-
amined the discovery and classification of component be-
havior from code and test data to support the reuse of soft-
ware [57]. Michail used association rules to detect reuse
patterns (i.e., typical usage of classes from libraries) [49]. As
an application of KDD in software maintenance, Shirabad
developed an instrument for the extraction of relationships in
software systems by inductive methods based on data from
various software repositories (e.g., update records, version-
ing systems) to improve impact analysis in maintenance
activities [70]. Zimmermann and colleagues pursue the
same goal using a technique similar to CBR. In order to
support software maintainers with related experiences in
form of association rules about changes in software systems
they mined association rules from a versioning system by
collecting transactions including a specific change [86].

 5

Morasca and Ruhe built a hybrid approach for the prediction
of defect modules in software systems with rough sets and
logistic regression based on several metrics (e.g., LOC)
[51].

Future research in this field is required to analyze formal
project plans for risk discovery, to acquire project informa-
tion for project management, or directly mine software rep-
resentations (e.g., UML, sourcecode) to detect defects and
flaws early in development.

Ambient Intelligence
The idea behind AmI are sensitive, adaptive, and reac-

tive systems that are informed about the user’s needs, hab-
its, and emotions in order to support them in their daily work
[30]. Therefore, techniques for autonomous, intelligent,
robust, and self-learning systems are needed to enable
communication between systems (machine-machine inter-
faces and ontologies) or users and systems (human-
machine interfaces).

AmI is based on several research areas, like ubiquitous
and pervasive computing, intelligent systems, and context
awareness [68]. Research for AmI tries to build an environ-
ment similar to the previously mentioned research areas like
intelligent software agents, KBS, as well as knowledge dis-
covery (e.g. to detect and analyze foreign systems and
software).

There are several AI research areas for the development
of smart algorithms for AmI applications [77], e.g., user
profiling, context awareness, scene understanding [3], or
planning and negotiation tasks [30]. Research from the SE
side is concerned with model-driven development for mobile
computing [30], the verification of mobile code [61], the
specification of adaptive systems [60], or the design of em-
bedded systems [18]. Additionally, we need intelligent hu-
man interfaces from a usability perspective that translate
between users and a new configuration of the ambient sys-
tem. A fusion of these two fields could be established in
order to analyze and evaluate foreign software systems that
try to connect with the own system to be executed on its
hardware.

Currently, research for AmI is primarily funded by the EU
as well as the German National Science Foundation (DFG).
For example, several scenarios describing the vision of the
EU were published in [32], and the integrated project
WearIT@Work is funded at the University of Bremen which
emphasizes AmI for work processes. In Germany, the DFG
funded the „Forschungsschwerpunkt Ambient Intelligence“
at the Technical University of Kaiserslautern
(http://www.eit.uni-kl.de/AmI).

Various workshops and conferences on AmI were estab-
lished to foster exchange about AmI. Examples for these
meetings are the European Symposium on Ambient Intelli-
gence (EUSAI) [3], Workshop on Ambient Intelligence
(WAI), Workshop on Ambient Intelligence for Scientific Dis-
covery (AMDI), Workshop on Ambient intelligence @ Work,
International Conference on Ubiquitous Computing (Ubi-
Comp) [22], or the Workshop on Agents for Ubiquitous
Computing (UbiAgents).

4 Outlook

It is obvious from this overview that strong ties exist be-
tween artificial intelligence and software engineering that
offer a great potential for future research. Many new appli-
cations and research fields of interest to both disciplines will
develop covering knowledge-based systems for learning
software organizations, the development of computational
intelligence and knowledge discovery techniques for soft-
ware artifacts, agent-oriented SE, or professional develop-
ment of ambient intelligence systems.

As a conclusion, we have identified several research
fields interesting for both disciplines. The articles in the
remainder of this special issue elaborate on specific re-
search problems in these intersections.

References

[1] SEKE 2002: the 14th International Conference on
Software Engineering and Knowledge Engineering. Is-
chia, Italy: New York: ACM, 2002.

[2] Proceedings of the 18th IEEE International Conference
on Automated Software Engineering (ASE). Montreal,
Quebec, Canada: IEEE Computer Society, ISBN: 0-
769-52035-9, 2003.

[3] Aarts E. H. L., Ambient intelligence: First European
symposium (EUSAI 2003), vol. 2875. Veldhoven, The
Netherlands: Springer-Verlag, 3540204180, 2003.

[4] Abecker A., "Wissensbasierte Systeme," Berufsaka-
demie Mosbach, Lecture Notes 2002.

[5] Aha D. W., Becerra-Fernandez I., Maurer F., and Mu-
ñoz-Avila H., Exploring synergies of knowledge: man-
agement & case-based reasoning. Menlo Park, Calif.:
AAAI Press, ISBN: 1-577-35094-4, 1999.

[6] Althoff K.-D., Evaluating Case-Based Reasoning Sys-
tems: The Inreca Case Study. Postdoctoral Thesis
(Habilitationsschrift). Dept. of Computer Science, Uni-
versity of Kaiserslautern, Kaiserslautern, Germany,
1997.

[7] Althoff K.-D., "Case-based reasoning," in Handbook of
software engineering & knowledge engineering, vol. 1,
S.-K. Chang, Ed. Singapore: World Scientific, 2001,
pp. 549-587.

[8] Althoff K. D., Becker K. U., Decker B., Klotz A., Leo-
pold E., Rech J., and Voss A., "The indiGo project: en-
hancement of experience management and process
learning with moderated discourses." Berlin, Germany:
Springer Verlag, 2002, pp. 53-79.

[9] Althoff K.-D., Bomarius F., Müller W., and Nick M.,
"Using a Case-Based Reasoning for Supporting Con-
tinuous Improvement Processes," presented at Ger-
man Workshop on Machine Learning, Leipzig, 1999.

[10] Althoff K.-D., Decker B., Hartkopf S., Jedlitschka A.,
Nick M., and Rech J., "Experience Management: The
Fraunhofer IESE Experience Factory," presented at
Industrial Conference Data Mining, Leipzig, 2001.

[11] Althoff K.-D. and Nick M. M., "How to Support Ex-
perience Management with Evaluation - Foundations,

6

Evaluation Methods, and Examples for Case-Based
Reasoning and Experience Factory." Berlin: Springer
Verlag, 2004 (forthcoming, Accepted for LNAI series).

[12] Althoff K.-D. and Wilke W., "Potential uses of case-
based reasoning in the experience-based construction
of software systems," presented at 5th German Work-
shop in Case-Based Reasoning (GWCBR'97), Univer-
sity of Kaiserslautern, 1997.

[13] Aurum A., Managing software engineering knowledge.
Berlin: Springer, ISBN: 3540003703, 2003.

[14] Bartsch-Spörl B., "Ansätze zur Behandlung von fallori-
entiertem Erfahrungswissen in Expertensystemen,"
Künstliche Intelligenz, pp. 32-36, 1987.

[15] Basili V. R., Quantitative evaluation of software meth-
odology. College Park, Md.: University of Maryland,
1985.

[16] Basili V. R., Caldiera G., and Rombach H. D., "Experi-
ence Factory," in Encyclopedia of Software Engineer-
ing, vol. 1, J. J. Marciniak, Ed. New York: John Wiley &
Sons, 1994, pp. 469-476.

[17] Basili V. R., Shull F., and Lanubile F., "Building knowl-
edge through families of experiments," IEEE Transac-
tions on Software Engineering, vol. 25, pp. 456-73,
1999.

[18] Basten T., Geilen M., and Groot H. d., "Ambient intelli-
gence: impact on embedded system design," T. Bas-
ten, M. Geilen, and H. d. Groot, Eds.: Kluwer Aca-
demic Publishers, 2003.

[19] Bauer B., Müller J. P., and Odell J., "Agent UML,"
International Journal of Software Engineering and
Knowledge Engineering, vol. 11, pp. 207-230, 2001.

[20] Bergmann R., Althoff K.-D., Breen S., Göker M.,
Manago M., Traphöner R., and Wess S., Developing
industrial case-based reasoning applications : the IN-
RECA methodology, vol. 1612, 2nd ed. Berlin: New
York, ISBN: 3-540-20737-6, 2003.

[21] Birk A., Surmann D., and Althoff K. D., "Applications of
knowledge acquisition in experimental software engi-
neering," presented at 11th European Knowledge Ac-
quisition Workshop (EKAW'): Knowledge Acquisition,
Modeling, and Management, Berlin, Germany, 1999.

[22] Borriello G., UbiComp: 4th International Conference on
Ubiquitous Computing, vol. 2498. Berlin: ACM, 2002.

[23] Brandt M., Ehrenberg D., Althoff K.-D., and Nick M. M.,
"Ein fallbasierter Ansatz für die computergestützte
Nutzung von Erfahrungswissen bei der Projektarbeit,"
presented at 5th Internationale Tagung Wirtschaftsin-
formatik (WI'01) Information Age Economy, Heidel-
berg, 2001.

[24] Brandt M. and Nick M., "Computer-supported reuse of
project management experience with an experience
base," presented at Third International Workshop on
Advances in Learning Software Organizations (LSO
2001), Berlin, Germany, 2001.

[25] Caire G., Coulier W., Garijo F., Gomez J., Pavon J.,
Leal F., Chainho P., Kearney P., Stark J., Evans R.,
and Massonet P., "Agent oriented analysis using
MESSAGE/UML," presented at Second International

Workshop on Agent Oriented Software Engineering
(AOSE 2001), 2002.

[26] Castro J., Kolp M., and Mylopoulos J., "Towards re-
quirements-driven information systems engineering:
the Tropos project," Information Systems, vol. 27, pp.
367-91, 2002.

[27] Chang S. K., "Handbook of software engineering &
knowledge engineering. Vol. 1, Fundamentals," World
Scientific, 2001.

[28] Chang S. K., "Handbook of software engineering &
knowledge engineering. Vol. 2, Emerging technolo-
gies," World Scientific, 2002.

[29] Cook J. E. and Wolf A. L., "Discovering models of
software processes from event-based data," ACM
Transactions on Software Engineering and Methodol-
ogy, vol. 7, pp. 215-49, 1998.

[30] Da Costa O. and Punie Y., Science and Technology
Roadmapping: Ambient Intelligence in Everyday Life
(Ami@Life): Unpublished IPTS working paper, 2003.

[31] Dick S. H., Computational Intelligence in Software
Quality Assurance. PhD Thesis. Department of Com-
puter Science and Engineering, College of Engineer-
ing, University of South Florida, 2002.

[32] Ducatel K., Scenarios for ambient intelligence in 2010.
Luxembourg: Office for Official Publications of the
European Communities, ISBN: 9289407352, 2001.

[33] Giorgini P., Müller J. P., and Odell J. J., Proceedings of
the fourth international workshop on Agent-oriented
software engineering IV (AOSE 2003), vol. 2935. Mel-
bourne, Australia: Springer, 3540208267, 2004.

[34] Hendler J., "Experimental AI Systems," Journal of
Experimental and Theoretical AI, vol. 7, pp. 1-5, 1995.

[35] Henninger S., "Developing domain knowledge through
the reuse of project experiences," SIGSOFT Software
Engineering Notes, vol. Aug. 1995, pp. 186-195, 1995.

[36] Hexmoor H., Proceedings of the International Confer-
ence on Integration of Knowledge Intensive Multi-
Agent Systems (KIMAS 2003). Cambridge, MA, USA:
IEEE, ISBN: 0-780-37958-6, 2003.

[37] Hinchey M. G., Formal approaches to agent-based
systems: Second international workshop (FAABS
2002), vol. 2699. Greenbelt, MD, USA: Springer, ISBN
3-540-40665-4, 2002.

[38] Iglesias C. A., Garijo M., Gonzalez J. C., and Velasco
J. R., "Analysis and design of multiagent systems us-
ing MAS-CommonKADS," presented at Agent Theo-
ries, Architectures, and Languages. 4th International
Workshop, ATAL'97, Berlin, Germany, 1998.

[39] Jennings N. R., Sycara K., and Wooldridge M., "A
roadmap of agent research and development," Vivek,
vol. 12, pp. 38-66, 1999.

[40] Kalfoglou Y., Menzies T., Althoff K. D., and Motta E.,
"Meta-knowledge in systems design: panacea... or un-
delivered promise?," Knowledge Engineering Review,
vol. 15, pp. 381-404, 2000.

[41] Khoshgoftaar T. M., Software engineering with compu-
tational intelligence, vol. 731. Boston: Kluwer Aca-
demic Publishers, ISBN: 1-402-07427-1, 2003.

 7

[42] Khoshgoftaar T. M., Allen E. B., Jones W. D., and
Hudepohl J. P., "Data mining of software development
databases," Software Quality Journal, vol. 9, pp. 161-
76, 2001.

[43] Last M., Kandel A., and Bunke H., Artificial Intelligence
Methods in Software Testing, 2003.

[44] Lee J., Software engineering with computational intelli-
gence. Berlin: New York, ISBN: 3540004726 (alk. pa-
per) LCCN: 2003-42588, 2003.

[45] Lind J., Iterative software engineering for multiagent
systems : the MASSIVE method, vol. 1994. Berlin:
Springer, 3540421661, 2001.

[46] Lucena C. J. P. d., Garcia A. F., Romanovsky A. B.,
Castro J., and Alencar P. S. C., Proceedings of the
2nd International Workshop on Software Engineering
for Large-Scale Multi-Agent Systems (SELMAS 2003),
vol. 2940. Berlin: Springer, ISBN 3-540-21182-9, 2003.

[47] Luck M., McBurney P., and Preist C., "Agent Technol-
ogy: Enabling Next Generation Computing," AgentLink
Report No. 0-854-32788-6, 2003.

[48] Mendonca M. and Sunderhaft N. L., "Mining Software
Engineering Data: A Survey," DACS: Data & Analysis
Center for Software, Technical Report 1999.

[49] Michail A., "Data mining library reuse patterns using
generalized association rules," presented at Proceed-
ings of the 2000 International Conference on Software
Engineering (ICSE 2000), New York, 2000.

[50] Morasca S. and Ruhe G., "Special Issue on: Knowl-
edge Discovery from Empirical Software Engineering
Data," International Journal of Software Engineering
and Knowledge Engineering, vol. 9, pp. 495-498, 1999.

[51] Morasca S. and Ruhe G., "A hybrid approach to ana-
lyze empirical software engineering data and its appli-
cation to predict module fault-proneness in mainte-
nance," Journal of Systems and Software, vol. 53, pp.
225-237, 2000.

[52] Naur P. and Randell B., "Software Engineering: Report
of a conference," sponsored by the NATO Science
Committee, Garmisch, Germany 7-11 Oct. 1968.

[53] Nick M., Althoff K. D., and Tautz C., "Systematic main-
tenance of corporate experience repositories," Compu-
tational Intelligence, vol. 17, pp. 364-86, 2001.

[54] Nick M. M., Building and Running Long-Lived Experi-
ence-Based Information Systems. PhD Thesis. Dept.
of Computer Science, University of Kaiserslautern,
Kaiserslautern, to be submitted in 2004.

[55] Partridge D., Artificial intelligence and software engi-
neering : understanding the promise of the future. Chi-
cago: Glenlake Pub. Co. Fitzroy Dearborn Publishers,
ISBN 1-57958-062-9, 2000.

[56] Pedrycz W. and Peters J. F., Computational intelli-
gence in software engineering. Singapore: River Edge
N.J., ISBN: 9-810-23503-8, 1998.

[57] Pozewaunig H., Mining Component Behavior to Sup-
port Software Retrieval. PhD Thesis. Institut für Infor-
matik-Systeme der Fakultät für Wirtschaftswissen-
schaften und Informatik, Universität Klagenfurt, Kla-
genfurt, 2001.

[58] Rech J., Decker B., and Althoff K.-D., "Using Knowl-
edge Discovery Technology in Experience Manage-
ment Systems," presented at Workshop "Maschinelles
Lernen (FGML01)", Universität Dortmund, 2001.

[59] Richter M. M., "Artificial Intelligence," University of
Calgary, Canada, Lecture Notes 2004.

[60] Roman G.-C., Special issue on software engineering
for mobility. Dordrecht, Netherlands: Kluwer Academic,
Series ISSN: 0928-8910, 2002.

[61] Roman G. C., Picco G. P., and Murphy A. L., "Software
Engineering for Mobility: A Roadmap," presented at
Future of Software Engineering Track of 22nd ICSE,
Limerick, Ireland, 2000.

[62] Rombach H. D. and Ulery B. T., "Establishing a meas-
urement based maintenance improvement program:
lessons learned in the SEL," University of Maryland,
College Park, Md. 1989.

[63] Ruhe G. and Bomarius F., "Proceedings of Learning
software organizations (LSO): methodology and appli-
cations," presented at 11th International Conference
on Software Engineering and Knowledge Engineering,
SEKE'99, Kaiserslautern, Germany, 1999.

[64] Sandholm T. and Wooldridge M. J., 2nd International
Joint Conference on Autonomous Agents and Multi-
agent System (AAMAS 2003). Melbourne, Australia:
ACM, ISBN: 1-581-13685-4, 2003.

[65] Schank R. C., Dynamic memory : a theory of remind-
ing and learning in computers and people. Cambridge
Cambridgeshire: New York Cambridge University
Press, ISBN: 0521248582, 1982.

[66] Schank R. C., Abelson R. P., and joint a., Scripts,
plans, goals, and understanding : an inquiry into hu-
man knowledge structures. Hillsdale, N.J. L. Erlbaum
Associates: New York, ISBN: 0470990333, 1977.

[67] Schmid K., "Systematische Wiederverwendung im
Produktlinienumfeld - ein Entscheidungsproblem,"
Künstliche Intelligenz, vol. 3, 2004.

[68] Shadbolt N., "From the Editor in Chief - Ambient Intelli-
gence," IEEE intelligent systems & their applications,
vol. 18, pp. 2 (2 pages), 2003.

[69] Shepperd M., "Case-Based Reasoning and Software
Engineering," in Managing Software Engineering
Knowledge, A. Aurum, Ed. Berlin: Springer, 2003.

[70] Shirabad J. S., Supporting Software Maintenance by
Mining Software Update Records. PhD Thesis. School
of Information Technology and Engineering, University
of Ottawa, Ottawa, Ontario, Canada, 2003.

[71] Simons C. L., Parmee I. C., and Coward P. D., "35
years on: to what extent has software engineering de-
sign achieved its goals?," IEE Proceedings Software,
vol. 150, pp. 337-50, 2003.

[72] Stolpmann M. and Wess S., Optimierung der Kunden-
beziehungen mit CBR-Systemen - Intelligente Systeme
für E-Commerce und Support. Bonn: Addison Wes-ley
Longmann, 1998.

[73] Tautz C., Customizing Software Engineering Experi-
ence Management Systems and Related Processes
for Sharing Software Engineering Experience. Ph.D

8

Thesis. Department of Computer Science, University of
Kaiserslautern, Germany, Kaiserslautern, 2000.

[74] Tautz C. and Althoff K. D., "Using case-based reason-
ing for reusing software knowledge," Case Based Rea-
soning Research and Development, pp. Plaza, E.. -
Berlin, Germany, Germany Springer-Verlag, 1997,
xiii+648 156-65, 18 Refs., 1997.

[75] Truszkowski W., Rouff C., and Hinchey M., Proceed-
ings of the first international workshop on Radical
Agent Concepts (WRAC 2002), vol. 2564. McLean,
VA, USA: Springer, 3-540-40725-1, 2003.

[76] Tveit A., "A survey of Agent-Oriented Software Engi-
neering," presented at Proc. of the First NTNU CSGS
Conference, 2001.

[77] Verhaegh W. F. J., Aarts E. H. L., and Korst J., Algo-
rithms in ambient intelligence, vol. 2. Boston:
Dordrecht, ISBN: 140201757X, 2004.

[78] Wachsmuth I., "The Concept of Intelligence in AI," in
Prerational Intelli-gence - Adaptive Behavior and Intel-
ligent Systems without Symbols and Logic, vol. 1, H.
Cruse, D. J., and RitterH., Eds. Dordrecht, The Nether-
lands: Kluwer Academic Publishers, 2000, pp. 43-55.

[79] Wahlster W., "Einführung in die Methoden der Künstli-
chen Intelligenz," University of Saarbrücken, Germany,
Lecture Notes 2002.

[80] Welzer T., Yamamoto S., and Rozman I., Proceedings
of the fifth Joint Conference on Knowledge-Based
Software Engineering. Amsterdam: Washington DC,
ISBN: 1586032747, 2002.

[81] Winston P. H., Artificial intelligence, 3rd (repr. with
corrections 1993) ed. Reading, Mass.: Addison-
Wesley, ISBN: 0-201-53377-4, 1993.

[82] Wooldridge M., "Agent-based software engineering,"
IEE Proceedings Software Engineering, vol. 144, pp.
26-37, 1997.

[83] Wooldridge M. and Ciancarini P., "Agent-oriented
software engineering: the state of the art," presented at
1st International Workshop on Agent Oriented Soft-
ware Engineering (AOSE 2000), Berlin, Germany,
2000.

[84] Wooldridge M., Jennings N. R., and Kinny D., "The
Gaia methodology for agent-oriented analysis and de-
sign," Autonomous Agents and Multi Agent Systems,
vol. 3, pp. 285-312, 2000.

[85] Wooldridge M. J. and Jennings N. R., "Software engi-
neering with agents: pitfalls and pratfalls," IEEE Inter-
net Computing, vol. 3, pp. 20-7, 1999.

[86] Zimmermann T., Weißgerber P., Diehl S., and Zeller
A., "Mining Version Histories to Guide Software
Changes," presented at 26th International Conference
on Software Engineering (ICSE), Edinburgh, UK, 2004.

Contact

Dr. habil. Klaus-Dieter Althoff

Data and Knowledge Management
University of Hildesheim
PO Box 101363
31113 Hildesheim, Germany
althoff@dwm.uni-hildesheim.de

Jörg Rech
Fraunhofer IESE
Institute for Experimental Software Engineering
67661 Kaiserslautern, Germany
rech@iese.fraunhofer.de

 Klaus-Dieter Althoff received Ph.D. and
Habilitation in computer science from the
University of Kaiserslautern, Germany. He
was/is responsible for a number of research
projects on knowledge-based systems,
machine learning, case-based reasoning,
knowledge management (KM), and experi-
ence factory. He was/is member of various
program committees, reviewer for many
scientific journals, and co-chair of a number
of international events, e.g., the 3rd Confer-
ence on Professional KM (WM 2005). From
1997 to 2004 he was responsible for Experi-
ence-based Systems and Processes at the
Fraunhofer Institute for Experimental Soft-
ware Engineering as group leader/depart-
ment head. Since April 2004, he represents
the chair for Data and Knowledge Manage-
ment at the University of Hildesheim.

 Jörg Rech studied Computer Science at the

University of Kaiserslautern. He received the
B.S. (Vordiplom) as well as the M.S. (Dip-
lom) in computer science with a minor in
electrical science from the University of
Kaiserslautern, Germany. He was a re-
search assistant at the software engineering
research group (AGSE) led by Prof. Dieter
Rombach at the university of Kaiserslautern.
Currently, he is a researcher and project
manager at the Fraunhofer Institute for Ex-
perimental Software Engineering. His re-
search mainly concerns knowledge discov-
ery in software repositories, defect discov-
ery, code mining, code retrieval, automated
code reuse, software analysis, and knowl-
edge management.

