
Software Quality Improvement
through Experience-supported Refactoring

Jörg Rech, Eric Ras, Andreas Jedlitschka

Fraunhofer Institute for Experimental Software Engineering
67661 Kaiserslautern, Germany

(rech, ras, jedlitschka)@iese.fraunhofer.de

Abstract: In agile software development refactoring is an important phase for the
continuous improvement of software quality. Unfortunately, the application of
refactorings is very subjective and heavily based on the expertise of the developers
resulting in an unstable quality assurance. In this paper, we present an experience-
based approach for the semi-automatic and goal-oriented refactoring of software
systems based on didactical augmented experiences, following the experience
factory paradigm. This approach promises the accelerated acquisition, (re-) use,
and learning of knowledge in the refactoring process.

1 Introduction

Today, agile methods take in an increasing part of development methodologies in
industry. Agile methods like Extreme Programming (XP) consist of lightweight and
people-centric processes rather than traditional plan-based software development
methods. Some of the main principles of agile software development are to deliver high-
quality working software frequently to the customer, to welcome changing requirements
– even late in development, and to provide the support and environment to motivate
developers [Agile01]. It is cofounded through the 12 XP practices [Beck99] that in XP
code is the most important artefact. So it is not only pair programming where the
developers have to understand and extend code not developed by themselves. The
collective ownership, which should encourage everyone to change the code anywhere
and anytime, needs more than coding standards or guidelines.

Consequently, Refactoring becomes an important process in agile development to
improve the structure and the associated quality of software systems. Refactoring should
take place between development cycles or in maintenance activities. Especially in agile
development with high time-pressure, under-engineering – and consequently
unmaintainable software – usually occurs when the focus lies on adding more
functionality rather than improving the design. But, as systems are getting larger,
refactoring gets more and more complex and time consuming to do it manually. Even if
one knows where to refactor the software it is often not clear how and under which
conditions what refactoring activities should be performed [Fowler99].

In order to react fast on changing customer requirements or technological environments
the developers must either already have the competence to solve the current tasks or be
enabled to quickly learn required skills. Time-pressure and costs prevents developers to
participate in class trainings. The same is true if developers are asked to share their
knowledge and experiences in long and complex processes. Capturing their expertise
should be as non-intrusive and short as possible in order not to contradict the principles
of XP.

We propose an approach that supports refactoring activities by reusing knowledge and
didactical augmented experiences from experts. By following the Experience Factory
[BCR01a] paradigm, software quality relevant experiences made during the execution of
refactoring activities are captured from the developers, stored in an experience
repository, and augmented before reuse in new refactoring activities. The underlying
thesis is that continuous competence development for agile methods is primarily
enhanced by sharing knowledge amongst colleagues, using lightweight knowledge-based
systems combined with well-founded experiential learning principles. The key issue of
experiential learning is to extrapolate the experience from the learning setting to real
world situations.

2 Current Practice and Related Work

To improve the quality of systems developed with agile methods we propose a novel
approach related to the fields of Knowledge Management, experiential learning, and
Refactoring. The key issue of experiential learning is to extrapolate the experience from
the learning setting to real world situations. In the following sections we elaborate on
current practices and related work in these fields. A synthesis based on these fields and a
description of our approach will be given in the next section.

2.1 Current Practice in Refactoring

Refactoring is a manual process to remove or weaken quality defects and therefore to
improve the quality of software systems. Due to the fact that activities in software
product maintenance account for the majority of the cost in the software life-cycle
[BR00] refactoring is an effective approach to prolong the software lifetime and to
improve its maintainability. Especially in agile software development, methods as well
as tools to support refactoring become more and more important [MDD+03]. In this
paper we use the umbrella term quality defects for any defect in software systems that
has an effect on software quality (e.g., as defined in ISO 9126) but not directly effect
functionality. Examples for quality defects are code smells, design flaws, or anti-
patterns.

Current research in the field of software refactoring is very active and has identified the
use of metrics for refactoring as an important research issue [MDD+03]. Previous
research in the sub-field refactoring has resulted in behavior-preserving approaches to
refactor object-oriented software systems in general [Opdyke92], tool support to

automatically refactor or restructure applications [Griswold91, Roberts99] , or methods
for pattern based refactoring [Cinneide00].

Today, various methods for the discovery of quality defects are known. For example,
inspections are used to discover defects in early development phases, code analysis is
used to quantify code characteristics, testing is used to detect functional defects after
implementation, and coding standards are used to ensure quality attributes and prevent
quality defects. Research by Simon on code smell discovery resulted in metrics-based
and visually supported quality assurance with a similarity measure [Simon01] to
reclassify classes and minimize inter-class coupling. Zimmermann and colleagues pursue
the goal to support developers with related experiences about changes in software
systems. They mined association rules from a versioning system by collecting
transactions including a specific change [ZWD04]. Demeyer et al. proposed a
framework to predict refactoring activities with time series analysis based on several
metrics [DDN00]. Grant and Cordy proposed another approach to automatic code smell
detection by supporting a software developer in the rule-based discovery of code smells
as well as the belonging refactorings [GC03]. Finally, van Emden and Moonen analyzed
code for two code smells and visualized them for manual discovery [Moonen02].
Tahvildari examined the effect of refactorings on the two qualities maintainability and
performance by using several static and dynamic metrics [Tahvildari03]. Additionally,
the recently started project QBench pursues a similar goal by using metrics in order to
discover quality defects and automatically applying refactorings [QBench04]. The
amount of overlap in the area of defect discovery between their work and ours as
described in this paper and [Rech04] remains to be seen.

All of the mentioned research support specific kinds of quality defect discovery with
different techniques. None of these approaches are comprehensive, what metrics can be
used to discover quality defects, or describe how refactoring experiences could be
reused. Neither are the effects of refactoring activities on all software qualities or code
examined. Hence, in our approach we develop models to detect quality defects with
metrics or rules and try to support defect correction activities with tailored experiences.

2.2 Current Practice in Reusing and Learning from Experts’ Knowledge

Beck defined four essential values that should be reflected by XP practices to be
successful: communication, simplicity, feedback and courage [Beck99]. Communication
is one value that acts as an essential part of agile development practices like unit testing,
pair programming, and task estimation. So far, communication among developers and
customers in XP is typically done verbally and on different expertise levels, i.e., between
novices, practitioners, and experts. The loss of knowledge when key developers leave
the organization and the increasing flood of new arising information lead to the
development of Knowledge Management Systems (KMS). It was assumed that KMS
could solve the problem of exchanging knowledge between individuals by providing
intelligent retrieval mechanisms and innovative presentations techniques. Lindvall and
Rus stated that learning is considered to be a fundamental part of KM because
employees must internalize (learn) shared knowledge before they can use it to perform

specific tasks [RL02]. But most KMS’s focus on information and knowledge, e.g., the
product of processes and less on learning processes itself and the needs of individuals.

Hence, the aim of effective knowledge transfer is to guide novices or practitioners
through knowledge stages [FP67] to become experts by focusing on appropriate learning
processes that foster reflection and systematic thinking about the knowledge to be
transferred. This means that knowledge transfer should not focus only on knowledge
types, context or media presentation but also on learning processes that enable learners
to develop cognitive skills and competencies, which can be applied during daily work.
Recently, Ras and Weibelzahl presented a preliminary framework which could solve the
problems when novices reuse experts’ explicit knowledge by initiating appropriate
learning processes by means of micro-didactical arrangements [RW04].

3 Experience Based Refactoring

The basic process of our approach encompasses these methods as depicted in Figure 1.
Knowledge about quality defects from defect discovery processes is used to retrieve
experiences associated to similar smells from previous refactorings. The process to
discover and (re-) use refactoring experiences is described in section 3.1. These
experiences are used to handle the quality defect in the defect removal phase.
Additionally, these experiences are augmented by so called micro-didactical experience
arrangements (MiDEA) that initiate learning processes and hence improve the
experiences’ understandability, applicability and their adaptability to the reuse context.
MIDEA’s are further described in section 3.2. An example of our approach incl. details
on quality defects, refactorings, and refactoring experiences is given in section 3.3.

Fig. 1. Experience-based semi-automatic reuse of refactoring experiences

3.1 Defect Discovery and Correction Planning

As shown in Figure 2, we define six phases, based on the Quality Improvement
Paradigm (QIP) [BCR01b], for the continuous automatic discovery of quality defects.

Selected
refactoring
experience

Software Verification
e.g., Inspections

Software Validation
e.g., Code Testing

Software Diagnosis
e.g., Code Analysis,
Mining

Refactoring
Experiences

Defects
e.g., Bugs,
Code smells

Micro-Didactical Experience
Arrangement (MiDEA)
e.g., augmented refactoring
experiences

Software Documents
e.g., Code, Designs, …

Learning about &
Correction of Defect

e.g., Refactoring

Project 1

Project n

Daily
Work

Finding bugs, code smells, defect flaws, ...

learning
goal

LEB PB
SE-Ontology

Pedagogical Agent

Refactoring
experience

pattern
learning
elements

Selection of Experience
e.g., Inspections

Defect Discovery

Creation of MiDEAs

First, we start with the definition of qualities that should be monitored and improved. For
example, this may result in different goals (i.e., quality aspects) as, reusability demands
more flexibility or “openness” while maintainability requires more simplicity. Phase two
represents the application area for Knowledge Discovery in Databases (KDD). It is
concerned with the measurement and preprocessing of the source code to build a basis
for quality defect discovery. Results from the discovery process (i.e., quality defects) can
than be represented (e.g., visualized) and priorized to plan the refactoring in phase three.
Here, the responsible person has to decide which refactorings have to be executed in
what configuration and sequence in order to minimize work (e.g., change conflicts) and
maximize the effect on quality. To support decision making the quality defects are rated
using former refactoring experience and the related cause-effect relationship (e.g., a
longer method is harder to understand than a short one and therefore maintenance is
more expensive). So, if the removal of a specific kind of quality defect has finally shown
impacts on the desired quality attributes, this experience can be used to rate similar
quality defects currently found in the code. In the context of Empirical Software
Engineering, each refactoring activity can be seen as a case study with a hypothesis that
a specific refactoring action improves the code with respect to a desired quality
attribute(s). This step takes place in phase four. The refactoring itself is applied to the
software system by the developer. After the refactoring, the impact is evaluated (not
necessarily quantitative) in phase five. Therefore, the improved product is compared
with the original product to detect the changes and their impact on the remaining system.
Finally, in the sixth phase we report the experiences and data about tasks, changes, and
effects to support learning from the refactoring activity. This is the basis to continuously
improve the model of relationship between quality, refactorings, and quality defects.

Fig. 2. Quality-driven metrics-based refactoring

As indicated previously, the KDD sub-processes are grouped in phase two. We select
source code from a specific build, preprocess the code and store the results in the
software repository, analyze the data to discover quality defects, discover deviations

6. Report 6. Report
ChangeChange

4. Refactor 4. Refactor
ProductProduct

3. Plan 3. Plan
RefactoringRefactoring

1. Define 1. Define
QualitiesQualities

2. 2. AnalyzeAnalyze
ProductProduct

5. Monitor 5. Monitor
QualityQuality

Refactoring Refactoring
ExperiencesExperiences

from average behavior, cluster code blocks with severe or multiple quality defects, and
represent discovered and priority sorted quality defects to the user.

3.2 Augmenting Refactoring Experiences

Quality defects that are detected during defect discovery are used to search for related
refactoring experiences. After the user selects an experience that he wants to apply, the
selected experience is forwarded to the pedagogical agent that enriches the experience to
an MiDEA [RW04].

MiDEA are generated based on patterns. A pattern consists of a set of learning activities
that are covered by the MiDEA. A learning activity is defined as a tuple of a learning
process and the learning content to be used. All learning activities are documented
formally in an instructional design model. Each MiDEA contains learning activities that
fit to several adult learning styles. Four learning styles are supported: reflectors,
theorists, pragmatists, activists as described in Kolb’s learning style inventory [Kolb84].
The learning processes are related to Kolb’s Experiential Learning Circle (i.e., making
concrete experience, observation and reflection, formation of abstract concepts and test
in new situations) and to Merrill’s first principles of instruction (i.e., solving real world
problems, activating existing knowledge as a foundation for new knowledge,
demonstration of new knowledge, applying new knowledge by the learner, integrating
new knowledge into the learner’s world) [Merrill00].

The selection of learning activities is based the educational goal of the learner and the
type of experience to be reused (i.e., product, process, tool or lesson learned).
Educational goals differ widely in dependence of the target audience and the knowledge
of the learners. In our approach, we refer to Bloom’s taxonomy of educational goals
[BEF+56], which is widely accepted and applied in various topic areas including
Software Engineering [BDA+99]. A preliminary framework of the pedagogical agent in
[RW04]describes the generation process and the used technologies in more detail.
Semantic relations between learning elements and domain ontology are used by the
pedagogical agent to generate MiDEA’s. MiDEA’s support self-directed learning, i.e.,
they allow the learner to choose his own learning goal and the learning path to reach it.
A MiDEA can be understood as a network of learning elements in an information space,
where several guided tours are proposed and specific learning elements are used as
landmarks for orientation.

3.3 Refactoring Example

In this section we give a simple example to better understand the process of our
approach (as depicted in Figure 1).

Imagine an object-oriented software system with a method that has a length of 300
LOC. This code smell, as described in [Fowler99], is called “Long Method”. A long

method is a problem esp. in maintenance phases as the responsible maintainer will
have a hard time to understand the function of this method.

One suitable refactoring for the mentioned code smell might be the refactoring
simply called “Extract Method”: the long method is reviewed to detect blocks that
can be put into new (sub-)methods. The experience “The Extract Method is used to
remove code smells of the type Long Method” is enriched with LEs after the novice
user selects the learning goal “application” [BEF+56]. To fulfill this learning goal,
the developer uses a created MiDEA by which he first acquires knowledge about the
topics: method, class and LOC; a part of the refactoring domain ontology will be
presented for orientation purposes, a definition and description about the Extract
Method will be provided. The intermediate learning goal “comprehension” is
reached by providing examples of code smells, a summary of the previous learned
theory and a general scenario how such a code smell is removed. The “application”
level is reached by acquiring procedural knowledge, i.e., knowing how to remove the
Long Method code smell by providing descriptions about processes, principles, laws,
rules and strategies. The content is presented in a way that certain learning
processes are initiated e.g., asking open questions to activate previous knowledge or
to reflect about demonstrated knowledge; showing cause/effects of long methods to
improve understanding; providing examples of long methods so that the learner can
derive abstractions by systematic thinking; apply the new knowledge by solving
examples given by the MiDEA; integrate the gained knowledge into practice by
presenting guidelines and hints to solve the current problem of the project.

The generation of new methods might create another smell called “Large Class”
(i.e., the presence of to many methods in a class) which might complicate the case
even more.

For example, the developer might remark that every block of code that has a
common meaning, and could be respectively commented, could also be extracted into
several small methods. Furthermore, he might note that the extraction of (sub-)
methods, from methods implementing complex algorithms, can effect performance
requirements of the software system and therefore might not be applicable.

Finally, the new experiences are annotated by the developer and stored in the
refactoring experience base.

During the refactoring based on the information from the MiDEA the developer makes
two basic types of new experiences. He learns whether or not to apply refactorings for a
given code smell in a specific environment. Additionally, during the removal of a quality
defect he discovers the impact of changes on the rest of the system. While this example
only touches a simple quality defect and refactoring, more complex refactorings
influence inheritance relations or introduce design patterns [Fowler99].

4 Summary

The proposed framework promises the systematic and semi-automatic support of
refactoring activities for developers in agile development. Experiences made during the

execution of refactoring activities are captured, stored in an experience repository, and
didactical augmented before their reuse in new refactoring activities.

This incremental and low invasive (i.e., cheap) integration of knowledge management
and e-learning technology supports developers during refactoring as well as managers
for the monitoring and planning of larger refactoring activities.

Acknowledgements

We gratefully thank our students for their work as well as our colleagues Stephan
Weibelzahl, Klaus-Dieter Althoff, and Torsten Willrich for their valuable feedback. The
work presented has partly been funded by the BMBF (German ministry of education and
research) in context of the projects RISE (01ISC13D) and indiGo (01AK951A).

References

 [Agile01] Beck K., Beedle M., van Bennekum A., Cockburn A., Cunningham W., Fowler M.,
Grenning J., Highsmith J., Hunt A., Jeffries R., Kern J., Marick B., Martin R. C., Mellor S.,
Schwaber K., Sutherland J., and Thomas D., "Manifesto for Agile Software Development,"
2001.

[BCR01a] Basili, V.R.; Caldiera, G.; Rombach, H.D.: Experience Factory; in: Marciniak JJ (ed.),
Encyclopedia of Software Engineering, Vol. 1, pp. 511-519, John Wiley & Sons, 2001.

[BCR01b] Basili, V.R., Caldiera, G., and Rombach, H.D.: Goal Question Metric Paradigm; in:
Marciniak JJ (ed.), Encyclopedia of Software Engineering, Vol. 1, pp. 528–532, John Wiley &
Sons, 2001.

[BDA+99] Bourque P., Dupuis R., Abran A., Moore J. W., and Tripp L., "The guide to the
Software Engineering Body of Knowledge," IEEE Software, vol. 16, 35-44, 1999.

[Beck99] Beck K., "eXtreme Programming eXplained: Embrace Change." Reading: Addison-
Wesley, 1999.

[BEF+56] Bloom B. S., Engelhart M. D., Furst E. J., Hill W. H., and Krathwohl D. R., "Taxonomy
of educational objectives: The classification of educational goals," in Handbook I cognitive
domain. New York: Longmans, Green and Company, 1956.

[BR00] Bennett K. H. and Rajlich V. T., "Software Maintenance and Evolution: A Roadmap,"
presented at Future of Software Engineering Track of 22nd ICSE, Limerick, Ireland, 2000.

[Cinneide00] Cinneide M. O., Automated Application of Design Patterns: A Refactoring
Approach. Ph.D. Thesis. Department of Computer Science, Trinity College, Dublin, 2000.

[DDN00] Demeyer S., Ducasse S., and Nierstrasz O., "Finding refactorings via change metrics,"
ACM. In: SIGPLAN Not. (USA), vol. 35, 166- 77, 2000.

[Fowler99] Fowler M., Refactoring: Improving the Design of Existing Code, 1st ed: Addison-
Wesley, ISBN 0-201-48567-2, 1999.

[FP67] Fitts P. M. and Posner M. I., Human Performance. Belmont, CA: Brooks-Cole, 1967.
[GC03] Grant S. and Cordy J. R., "Automated Code Smell Detection and Refactoring by Source

Transformation," presented at International Workshop on REFactoring: Achievements,
Challenges, Effects (REFACE), Victoria, Canada, 2003.

[Griswold91] Griswold W. G., Program Restructuring as an Aid to Software Maintenance. PhD
Thesis. Department of Computer Science and Engineering, University of Washington,
Washington, 1991.

[Kolb84] Kolb D. A., Experiential Learning: Experiences as the source of learning and
development. New Jersey: Prentice Hall, 1984.

[MDD+03] Mens T., Demeyer S., Du Bois B., Stenten H., and Van Gorp P., "Refactoring: Current
Research and Future Trends," Electronic Notes in Theoretical Computer Science, vol. 82, 17,
2003.

[Merrill00] Merrill M. D., "First principles of instruction," presented at International conference of
the Association for Educational Communications and Technology (AECT), Denver, USA,
2000.

[Moonen02] Moonen L., Exploring Software Systems. Ph.D Thesis. Faculty of Natural Sciences,
Mathematics, and Computer Science, University of Amsterdam, Amsterdam, Netherlands,
2002.

[Opdyke92] Opdyke W. F., Refactoring object-oriented frameworks. Ph.D. Thesis. Graduate
College, University Illinois at Urbana-Champaign, Urbana, Illinois, 1992.

[QBench04] Andriessens C., Mohaupt T., Seng O., Simon F., Trifu A., and Winter M., "QBench
Projektergebnis: Stand der Technik," FZI Forschungszentrum Informatik, Project Report, 2004.

[Rech04] Rech J., "Towards Knowledge Discovery in Software Repositories to Support
Refactoring," presented at Workshop on Knowledge Oriented Maintenance (KOM), Banff,
Canada, to appear 2004.

[RL02] Rus I. and Lindvall M., "Special Issue on Knowledge Management in Software
Engineering," IEEE software, vol. 19, 26-38, 2002.

[Roberts99] Roberts D. B., Practical Analysis for refactoring. Ph.D. Thesis. Graduate College,
University of Illinois at Urbana-Champaign, 1999.

[RW04] Ras E. and Weibelzahl S., "Embedding Experiences in Micro-didactical Arrangements,"
presented at 6th International Workshop on Advances in Learning Software Organisations
(LSO 2004), Banff, Canada, 2004.

[Simon01] Simon F., Meßwertbasierte Qualitätssicherung: Ein generisches Distanzmaß zur
Erweiterung bisheriger Softwareproduktmaße (in German). Ph.D. Thesis. Fakultät für
Mathematik, Naturwissenschaften und Informatik, Brandenburgische TU Cottbus, Cottbus,
2001.

[Tahvildari03] Tahvildari L., Quality-Driven Object-Oriented Re-engineering Framework. PhD
Thesis. Department of Electrical and Computer Engineering, University of Waterloo, Waterloo,
Ontario, Canada, 2003.

[ZWD+04] Zimmermann T., Weißgerber P., Diehl S., and Zeller A., "Mining Version Histories to
Guide Software Changes," presented at 26th International Conference on Software Engineering
(ICSE), Edinburgh, UK, 2004.

